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1. INTRODUCTION  

 

Viiankiaapa, a Natura 2000 protected aapamire, is located in northern Finland in 

municipality of Sodankylä. In 2009 a large, globally significant Ni-Cu-PGE ore deposit, 

named Sakatti, was discovered underneath the Viiankiaapa mire (Brownscombe et al. 

2015). The setting of Natura 2000 protected area and a potential mine site is 

complicated and it has drawn a lot of public attention. There has even been discussion 

weather the protection should be completely or partly canceled in future if the mining 

begins. The Sakatti project is currently in exploration phase and environmental impact 

assessment of the possible mine is on progress. 

 

Aapamire, as Viiankiaapa, is the most common mire type in northern Finland (Maunu 

and Virtanen 2005). So-called aapamire zone reaches from the Central Finland almost 

to the northernmost Lapland (Lappalainen 2004, 26). In southern Finland aapamires are 

rare and most dominant mire type is raised bog (Solantie, 2006). The most important 

factor for this distribution of aapamires and raised bogs is the ratio of areal precipitation 

and evapotranspiration between northern and southern Finland. In northern areas the 

evapotranspiration is smaller than in south and thus the amount of excess water is 

greater (Solantie, 2006). Bogs and fens do not only differ in hydrology but also in 

nutrient content that, however is very strongly affected by areal hydrology. If 

simplifying bogs are low in nutrients (ombrotrophic bogs), they are elevated from the 

ground surface and therefore only fed by rainwater. Fens are fed, in addition to 

rainwater, with groundwater as well as surface water runoff and spring floodings that 

carry high amounts of nutrients compared to rainwater (minerotrophic fens) 

(Lappalainen 2004, 23). Hydrological conditions do not only vary between different 

mire types but also within a single aapamire causing heterogeneous areas. Center of the 

aapamire is usually treeless, wet fen whereas dryer swamps are occasionally found from 

the margins. Patterns of flarks and strings are common in aapamire (Maunu and 

Virtanen 2005). The spatial variation in wetness, in the stability of water table and in 

hydrogeochemistry causes also variation in thriving plant species. The hydrology and 

vegetation are strongly interdependent and even minor changes in hydrology and thus in 

hydrochemistry might cause extensive changes in vegetation (Mitch and Gosselink, 

2007). The areas of groundwater discharge within the mire and in general have often a 
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specific kind of vegetation that mainly thrives at the areas where water chemistry has 

features of groundwater and surface water (Kløve et al. 2011). The moss species 

Hamatocaulis vernicosus and Hamatocaulis Lapponicus, are known to thrive in these 

kind of environments, indicating often the discharge of groundwater (Laitinen et al. 

2005, Štechová et al. 2008).  

 

When the vegetation is dependent on areal hydrochemistry is the hydrochemistry 

influenced by the areal soil and bedrock geochemistry (Lahermo et al. 1990). The 

influence of soil and bedrock geochemistry is seen both in surface water and in 

groundwater, yet the influence in groundwater is greater. It is studied that groundwater 

can transport metals from the mineral soil and the upward-discharging groundwater can 

elevate the metal content in peat layer (Hill and Siegel, 1991). In Finland areal 

hydrogeochemistry has been widely studied by Lahermo et al. (1990, 1996). The 

composition of groundwater in Finland is generally slightly acidic due to the dominant 

felsic bedrock. The areas with bedrock of metamorphic schists or mafic / ultramafic 

bedrock as the area of Central Lapland Greenstone Belt (CLGB), have usually 

groundwater with locally higher cation content and pH (Lahermo et al. 1996).  

 

Objectives of this study were, using hydrogeochemistry (1) to find the possible 

groundwater discharge locations in aapamire, (2) study if the bedrock and ore body 

affect to the water chemistry and (3) find out whether the distribution of Hamatocaulis 

vernicosus ecosystems correlate with certain type of water chemistry and/or with 

groundwater discharge areas. 

 

 

2. THE HYDROGEOLOGY AND HYDROGEOCHEMISTRY OF MIRES 

 

 

2.1 Hydrogeology of mire  

 

Two main factors are required for mires to form; the suitable climate and areal 

geomorphology. Climate needs to be cool and wet so the precipitation exceeds 



  

 

7 

evaporation and allows excess water to accumulate to depressions of basins with 

relatively flat topography and poorly permeable soil (Mitch and Gosselink 2007, 108). 

Natural state aapamires are often affected not only with precipitation but also with 

groundwater discharge and flooding of nearby surface water bodies. Flooding and 

groundwater discharge transport nutrients to and from mires specifying the 

hydrogeochemical environment of the mire (Mitch and Gosselink 2007, 108). Even 

though all the water sources play important part in mire hydrology, is precipitation still 

the most important and stable source of water (Bleuten et al. 2006). The balance 

between precipitation and evaporation, groundwater discharge and recharge, possible 

flooding as well as surface water inflow and outflow are the main factors to determine 

the water budget of a mire (Fig. 1) (Mitch and Gosselink 2007, 121). 

 

 

Figure 1. Simplified water budget of aapamire (modified from Mitch and Gosselink, 2007). Pn = net 
precipitation, I = Interception, ET = evapotranspiration, Si = Surface water inflow, So = Surfacewter outflow, 

F = Flooding in and out, Gi = Groundwater discharge, Go = groundwater recharge. 

 

These multiple different water sources change hydrological as well as hydrochemical 

environment and are thus important factors in characterizing hydrology and 

hydrochemistry of mire. Besides the water sources many other factors as basal material 

e.g. mineral content and grain size, thickness and stage of decomposition of peat layer 

as well as water depth change the hydrology causing variation in water movement 

within a mire complex (Mitch and Gosselink 2007, 108).  
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The groundwater discharge occurs if the surface of mire water table is lower than the 

surrounding groundwater table and if the soil material is permeable (Bleuten et al. 

2006). The discharging groundwater migrates as a vertical flow from the mineral soil 

towards the top of the peat layer as well as a horizontal flow through the peat (Ferlatte 

et al. 2015). However the vertical groundwater flow is minor (Reeve et al. 2000), and 

the dominant water flow direction is horizontal through the peat layer (Bleuten et al.). 

The vertical connection through the peat layer also decreases when the peat layer 

thickens e.g. when the distance from the dry land increases (Ferlatte et al. 2015). There 

is also lots of variation in flow flux depending on the stage of decomposition of the peat 

(Bleuten et al. 2006). Peat deposits can be roughly divided in two layers, the upper 

acrotelm and deeper catotelm (Ingram, 1983). Acrotelm reaches from the top of the peat 

to the depth of 10 to 50 cm following usually the lowest level of water table fluctuation. 

It is less decomposed than catotelm and therefore the water flow is faster in acrotelm 

than in catotelm. Catotelm is almost continuously under water, it is more decomposed 

than acrotelm and it reaches from the boundary of acrotelm to the mineral soil beneath 

the peat (Ingram, 1983). The more decomposed peat is the slower the water flow is 

(Mitch and Gosselink 2007). Water flow can be thousand times faster in acrotelm, 

where peat is still fibric and only little decomposed compared to the decomposed 

catotelm (Fraser et al. 2001, Bleuten et al. 2006, Mitch and Gosselink 2007). The 

horizontal hydraulic conductivity (Kh) for acrotelm varies from 10-7 ms-1 to 10-3 ms-1 

and the speed of flow decreases with respect of the depth (Frasier et al. 2001). The Kh 

of catotelm, that is 10-8 ms-1 to 10-6 ms-1, is much more homogenic and not as clearly 

depth dependent (Fraser et al. 2001). Because of the faster water flow, the upper layer, 

acrotelm, is more sensitive to changes in weather. The changes in precipitation and 

evaporation can change the direction of water flow in peat layer (Fraser et al. 2001). 

The annual changes in weather may also fluctuate groundwater table and have thus 

effect to groundwater flow direction (Fraser et al. 2001). These changes in groundwater 

table can change the areas of groundwater discharge to become areas of groundwater 

recharge (Fraser et al. 2001). At the areas where groundwater discharge is relatively 

stable and continuous (Mitch and Gosselink, 2007, 113) or where the peat layer is thick 

(Jabłońska et al. 2014) the changes in weather affecting water table fluctuation are 

minor and the water table is more stable than at the areas without stable groundwater 

discharge or thinner peat layer.  
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Some mires get occasionally extra water when they are completely or partly flooded by 

flooding river nearby. In addition to groundwater flooding is an important factor as a 

nutrient supply for the mire. In cold regions with annual snow cover, spring floods are 

common (Mitch and Gosselink, 2007, 132).  

 

 

2.2 Hydrogeochemistry - an influence of groundwater discharge  

 

Mires gain water from multiple different sources having their own characteristic 

chemical composition depending on the environment where the water originates. Ratio 

between these water sources dictates the chemical composition of mire water. Due to 

the lack of nutrients in precipitation, groundwater discharge and / or possible flooding 

are the most important factors of nutrient supply of mires (Bleuten et al. 2006). 

Groundwater discharge areas are relatively easy to detect with field measurements and 

with help of hydrogeochemistry due to the high amount of dissolved ions in it. It is 

studied that the periods of groundwater discharge increase the electric conductivity 

(Siegel et al. 1995, Frasier et al. 2001), pH (Tahvanainen et al. 2002) as well as the 

cation content of mire water (Frasier et al. 2001, Tahvanainen et al. 2002). In study of 

Frasier et al (2001) the positive changes of cation content at the area of groundwater 

discharge, even if the concentrations were relatively small, were in percentage terms 

much greater at the water in top peat layer of the mire, showing that even small increase 

of ions in surface water of mire can indicate possible groundwater discharge. 

Conversely, dissolved organic carbon (DOC) content is noticed to be lower at those 

sites of the mire that are influenced by groundwater discharge because of its absence in 

groundwater (Tahvanainen et al. 2002). In addition to water chemistry the discharge of 

groundwater can be detected when inspecting the peat chemistry. In study by Hill and 

Siegel (1991) the metal content of the peat at spring-fen site was found to be 10% 

greater compared to the ombrotrophic bogs where the influence of groundwater is 

absence. 

 

A mire complex consists of smaller subunits with different hydrological properties. This 

causes spatial variation also in hydrochemistry and available nutrients within the whole 

complex (Tahvanainen et al. 2002). The major differences occur between margins and 
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the center of the mire (Bleuten et al. 2006, Jabłońska et al. 2014) and are most likely 

explained with the changes in thickness of the peat, the distance from the mineral soil as 

well as the geomorphology of the mineral soil (Jabłońska et al. 2014). At the 

groundwater discharge areas, hydrogeochemistry of mire also can be influenced by the 

bedrock or mineral soil beneath the peat (Shotyk 1988, Tahvanainen 2004). Studies 

done in north-eastern Finland (Tahvanainen 2004) indicated that mires with waters, rich 

of magnesium and nutrients, are located mainly at the areas with mafic bedrock, which 

is more prone to chemical weathering, whereas mires with nutrient poor waters had 

calcium as main ion and were located within areas of felsic bedrock. These differences 

in water chemistry are visible in mire vegetation as shown in studies of Tahvanainen et 

al. (2002) and Bleuten et al. (2006). According to Tahvanainen et al. (2002) the 

variation of areas with poor or rich mire vegetation is connected to the surface water 

chemistry of the mire. The water chemistry at the areas of rich vegetation reflected 

groundwater influence having elevated electric conductivity and pH and higher Na, Mg 

and alkalinity content. The study was done within felsic, poorly weathered bedrock 

zone and the ion composition in rich mire was relatively low compared to the rich mire 

hydrochemistry in general. From this it is possible to draw conclusion that groundwater 

discharge seems to have influence in mire vegetation even the nutrient content of the 

water is generally low. 

 

 

2.3 Groundwater and ecosystems 

 

The areas of groundwater discharge differs hydrogeochemically from the surrounding 

waters having features of surface water as well as groundwater. These environments e.g. 

riparian and hyporheic zones, caves, estuaries as well as wetlands and mires, just to 

mention few, are important substrates for groundwater dependent ecosystems (GDEs) 

(Kløve et al. 2011). The importance of groundwater discharge for GDEs is mainly 

based on the stability of nutrient supply and temperature as well as the stable source of 

the water, especially if the area is otherwise arid. The groundwater discharge may be 

seasonal, continuous or occasional depending of the geological setting as well as the 

amount of annual precipitation and evaporation (Kløve et al. 2011).  
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2.3.1 Hamatocaulis vernicosus 

 

In this study our interest is in Hamatocaulis vernicosus, a moss species that is known to 

thrive in groundwater discharge influenced environments. H. vernicosus 

(Kiiltosirppisammal in Finnish) has been common throughout Finland, especially at 

nutritious mires of Lapland. Due to the human activity, e.g. draining the mires, has the 

hydrochemistry and hydrology of the environment changed causing evanescence of H. 

vernicosus from many of its original habitats. Nowadays H. vernicosus is classified as 

vulnerable (VU) specie. (Laaka-Lindberg et al. 2009. 119 – 121). The habitat of H. 

vernicosus has been studied during the years and few factors specifying where H. 

vernicosus thrive, has come to the fore. According to Štechová et al. (2008) the 

optimum pH conditions of water for H. vernicosus are fluctuating from slightly acid to 

base-rich depending on the region of growth. In general the hydrogeochemical main 

features for H. vernicosus ecosystems seem to be elevated EC (Hedenäs and Kooijman 

1995, Štechová et al. 2008), pH that is almost neutral (Štechová et al. 2008) or slightly 

elevated and higher Ca, Mg and HCO3
- concentrations (Hedenäs and Kooijman 1995). 

All these are characteristic for places of groundwater discharge (Hiscock and Bense 

2014, 137). The iron content of water and its effect on H. vernicosus has been unclear in 

earlier studies. Štechová and Kucera (2007) didn’t find any significant correlation with 

iron and occurrence of H. vernicosus ecosystems but in later studies of Štechová et al. 

(2012) a positive correlation was found between dissolved iron and abundance of H. 

vernicosus ecosystems. The positive correlation has also been found in study by 

Hedenäs and Kooijman (1995). In addition to the chemical composition also seasonal 

water table fluctuation and high amount of other moss species are found to be important 

factors affecting negatively to H. vernicosus ecosystems (Štechová et al. 2012).  
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3.  GEOLOGICAL SETTING 

 

 

3.1 Study area 

 

Viiankiaapa (67°33’ N and 26°46’ E, WGS84) is located in municipality of Sodankylä, 

20 kilometers north from the town center. Viiankiaapa mire complex consists mainly of 

moderate to rich mires as well as small raised bog (Metsähallitus, 2006). It covers 7 135 

ha when including Eliasaapa and Käppäläaapa and its mean elevation is 190 m.a.s.l. 

(Lappalainen 2004, 21). According to Finnish Meteorological Institute the average 

temperature of Viiankiaapa in September 2016, during the field work period, was 8 °C 

and in October 3 °C. No average temperature data from March and April 2017 is 

available, but in years 1981 – 2010 the average temperature in March was -7.5 °C and 

in April -1.3 °C. Average temperatures in Sodankylä (years 1981 – 2010) has been 

below zero for four months, from November to April. The yearly precipitation in 

Sodankylä in 2016 was 600 – 700 mm a-1 (The Finnish environment institute, 2017). 

Precipitation in September 2016 was 76 mm and in October 9 mm, the snow depth in 

March 2017 was 79 cm and in April 73 cm (Finnish Meteorological Institute). The 

study area is located on the western margin of Viiankiaapa. Water samples were 

collected from the areas with and without H. vernicosus ecosystems, covering Sakatti 

deposit area and surrounding units described earlier, and reference area with bedrock of 

quartzite, gabbro and graphite paraschist (Fig. 2).  
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Figure 2. Study area. (General map Database © NLS 2014) 
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3.1.1 Definition of Natura 2000 

 

Majority, 92%, of Viiankiaapa is protected as a Natura 2000 area and thus belongs in a 

nature conservation network (Metsähallitus 2006, 7) (Fig. 2). The aim of Natura 2000 

network is to protect rare and threatened plant and animal species as well as rare natural 

habitat types that are mentioned in European Union directive: Council Directive 

92/43/EEC on the Conservation of natural habitats and of wild fauna and flora 

(European Commission 2017). Viiankiaapa is Natura 2000 protected due to the several 

natural habitat types and plant species as, our interest, Hamatocaulis vernicosus 

(Ympäristö.fi, 2013).  

 

 

3.2 Bedrock geology of Viiankiaapa area 

 

Viiankiaapa is located within Central Lapland Greenstone Belt (CLGB) at the 

Sodankylä schist area (Räsänen 2008, Hanski and Huhma 2005). CLGB crosses 

northern Finland from east to west when spreading from Kuusamo to Kolari. It consists 

of Proterozoic metasedimentary and metavolcanic rocks that are formed over Archean 

granite gneiss (Räsänen 2008) approximately 1.9 – 2.5 Ga ago (Brownscombe et al. 

2015). The composition of metavolcanic rocks varies from felsic (rhyolites) to 

ultramafic (komatiites) (Brownscombe et al. 2015) while metasedimentary rocks are 

mainly quartzites and mica schist (Lehtonen et al 1998, Hanski and Huhma. 2005). 

Metasedimentary rocks are major at Sodankylä schist area but within the study area 

both types are equally present (Fig 3). Because of the geological history, the ore 

potential of CLGB is high (Lahtinen et al. 2012, 397). The fracturing and rifting of 

Archean craton during Palaeoproterozoic Era led to events where quantities of magma 

ascended and both mafic and ultramafic intrusions as well as extrusions were formed 

(Hanski, 2015, 51). These events are essential for Ni-Cu-PGE formations and explain 

presumably Sakatti Ni-Cu-PGE ore formation (Hanski 2015, 51). Sakatti deposit is 

located right at the western margin of the Viiankiaapa mire and is therefore in our 

interest.  
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Figure 3. Bedrock of the study area. (General map Database © NLS 2014, Bedrock map Database © 
Geological Survey of Finland 2014. Sakatti deposits modified from Brownscombe et al. 2015)   
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Sakatti deposit was discovered in 2009 when mining company Anglo American 

performed drillings at the Sodankylä area (Brownscombe et al. 2015). The deposit 

consists of three different ore bodies with similar petrological qualities. The ore itself is 

hosted by an ultramafic olivine cumulate (peridotite unit) that is serpentinized and could 

technically be called as serpentinite (Brownscombe et al. 2015). The deposit is 

surrounded with aphanitic unit (most likely volcanic origin), volcanoclastic unit and 

breccia unit as well as with a mafic suite (Brownscombe et al. 2015). Whether the 

Sakatti deposit will be mined and when would that happen is still unknown, the 

exploration phase is still ongoing.  

 

 

3.3 Deglaciation and surficial deposits of Sodankylä area 

 

Northern Finland has gone through several glaciations and deglaciations during the 

Quaternary period (Taipale and Saarnisto 1991, 231). The most recent was last 

Weichselian cold stage (110 – 10.3 ka) when northern Finland was covered with ice for 

most of the time (Johansson et al. 2011). Early Weichselian (Hirvas 1991) as well as 

Middle Weichselian (Lunkka et al. 2015) deposits show however that some ice-free 

events have occurred in central Lapland at which time climate has resembled mostly 

tundra like conditions (Hirvas 1991). During the Late Weichselian glaciation the ice 

divide zone of stagnant cold-based glacier were located right at the north of Sodankylä 

causing only minor areal glacial erosion (Johansson et al. 2011). Nowadays the poor 

glacial erosion of ice divide zone is shown as presence of highly weathered bedrock that 

otherwise is generally lacking throughout Finland. The deglaciation of northern Finland 

initiated 11.6 ka ago when elevated areas, as fjelltops were first to expose under ice. 

Deglaciation lasted approximately 1.5 k years and Sodankylä area was ice-free 10.3 ka 

ago (Johansson 2007). Directly after the deglaciation Sodankylä area was covered with 

waters of Moskujärvi ice-lake. When ice margin retreated further, waters of Ancylus 

ice-lake reached Sodankylä (Johansson and Kujansuu 2005).  

 

During glaciations and deglaciations several different sedimentation events moulded the 

Sodankylä area causing complex areal sedimentology (Sarala et al. 2015). Varying 

moraine deposits and basal till cover are common within Sodankylä (Sarala et al. 2015), 
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till cover is also present as a base sediment of Viiankiaapa mire. However, the most 

common sediments under the Viiankiaapa peat layer are fluvial deposits of sands and 

gravels (Metsähallitus 2006, Åberg et al. 2017a). Also smaller areas of fine-grained, 

silty and sandy sediments deposited during Moskujärvi ice lake phase (Sarala et al. 

2015) are locally found (Åberg et al. 2017a). There are six mapped groundwater areas 

near Viiankiaapa. Two of them, Kersilönkangas and Pahanlaaksonmaa, are the main 

groundwater recharge areas within the study area. Both of them are located parallel to 

River Kitinen, between the river and Viiankiaapa mire (Britschgi et al. 1996) (Fig. 4). 

According to the old classification (Britschgi et al. 1996) Pahanlaaksonmaa and 

Kersilönkangas are classified as III class aquifers. The transitional stage to new 

classification is still unfinished and at the moment it is unknown what the future 

classification is for these recharge areas when the old class III is removed. Aquifers of 

Viiankiaapa are hosted by fluvial sediments and are poorly connected due to the 

variation in sediment units and thus in hydraulic conductivity (Åberg et al. 2017a). 
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Figure 4. Soil map of the study area and nearby groundwater recharge areas. (General map Database © 
NLS 2014, Soil map Database © Geological Survey of Finland 2010, Open database © Finnish 
Environmental Institute 2014).  
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According to previous peat studies (Lappalainen 2004, 35) Viiankiaapa mire has gone 

through various phases after it became peaty ca. 8.6 ka ago. The peat layer, covering 

Viiankiaapa nowadays, is mainly two meters thick (Metsähallitus, 2006, Åberg et al. 

2017b) being more than seven meters when thickest (Åberg et al. 2017b). The spatial 

division of peat thickness is uneven. Peat layer is thickest in western and northern part 

and thinnest in southern part of the mire (Åberg et al. 2017a, Åberg et al. 2017b). 

Continuously thick peat layer (≥ 4 m) crosses the mire from SW to NE starting from the 

southwestern corner and continuing towards Lake Viiankijärvi (Åberg et al. 2017a). 

Peat has been accumulating thousands of years in Viiankiaapa and the accumulation 

rate has been relatively fast, 0.3 - 0.6 mm a-1 (Lappalainen 2004, 36). Viiankiaapa is 

considered as a natural state mire, with exception of area near Moskuvaara road where 

natural water flow is blocked (Metsähallitus 2006, 16). However the construction of 

Matarakoski hydroelectric power plant at the NW end of Viiankiaapa in 1995 changed 

the areal hydrology and reduced annual floodings of the River Kitinen. There area 

altogether two hydroelectric power plants between Matarakoski power plant and 

artificial Lake Porttipahta. 

 

 

4. MATERIAL AND METHODS 

 

 

4.1 Material 

 

Fieldwork was done in September and October of 2016 and in March/April of 2017.  

Total of 137 samples collected from 71 different sampling locations. Samples were 

taken from surface water of the mire (n = 55), peat pore water using mini-piezometer 

(MP) (n = 66) and groundwater (n = 16) (Appendix 1).  Sampling was continued in 

summer 2017 when 19 additional samples were collected mainly from groundwater 

observation wells and springs for isotopic analyses. A profile consisting of surface 

water sample and one or more peat pore water samples were taken from 28 different 

sampling points. Single surface water or groundwater sample was taken from 44 

sampling points. Sampling locations were planned to cover varying bedrock types in 
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and outside of Sakatti deposits, with and without Hamatocaulis vernicosus ecosystems 

(Fig 5 and 6).  

 

 

Figure 5. Surface water, peat pore water and groundwater sampling points. IDs not presented because 
several samples are taken from same location. (General map Database © NLS 2014) 
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Figure 6. Sampling profiles (may contain only one surface water / groundwater sample / spring sample or 
both surface water sample and one or more peat pore water samples, see Appendix 1) (General map 

Database © NLS 2014). 
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4.2 Field investigations 

 

Groundwater discharge and thus supply of dissolved elements causes measurable 

anomalies in surface water temperature and pH values as well as in electric conductivity 

(EC). Even though the pH of Finnish groundwater is generally slightly acidic is it 

nonetheless usually higher than the pH of surface waters (Lahermo et al. 1990, 21). The 

difference of groundwater and surface water is also seen in electric conductivity. EC for 

fresh groundwater is roughly ten times greater than for fresh rainwater as well as for 

surface water (Hiscock and Bense, 2014, 139). Because of the areal geology, Central 

Lapland Greenstone Belt, the EC and pH values of groundwater may locally be elevated 

even more than what they usually are at the areas of groundwater discharge (Lahermo et 

al. 1990, 21). The median EC (+25°C) of spring water within areas of mafic bedrock is 

little less than 0.1 mS cm-1 and in dug wells almost 0.2 mS cm-1. pH at the mafic 

bedrock areas is approximately 6.7 (Lahermo et al. 1990, 55–56). The anomalies in EC 

and pH renders the groundwater discharge easily detected with simple field 

measurements (Hiscock and Bense, 2014, 139). Temperature is another parameter that 

is easily measurable in situ at the field. The temperature of groundwater is 2 – 4 °C in 

northern Finland thus it is colder or warmer than the surface water depending on the 

season. Problem is if the measurements are conducted during the autumn or spring, at 

the times when groundwater and surface water temperatures are approximately the 

same.  

 

Electric conductivity, pH and temperature were measured in situ with portable YSI 

600XLM multi probe. Electric conductivity and pH was calibrated daily with standard 

calibration liquids before starting the fieldwork. Surface water samples were measured 

placing the probe to the water near the sampling point. This method was not possible for 

peat pore water and groundwater samples. In these measurements, water was first 

collected to clean, 500mL sampling bottle with groundwater sampler or mini-

piezometer and then measured. EC, temperature and pH were measured only during the 

September and October field work periods.  
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4.3 Water sampling 

 

Samples were collected directly into the sampling bottles at field. Groundwater samples 

were collected using sampler after pumping the stagnant water from the observation 

well, surface water samples were collected by hand and peat pore water samples using 

mini-piezometer (Fig. 7). Samples were collected for main ion composition, stable 

isotopes (δ18O, δD), dissolved silica (DSi), dissolved organic carbon (DOC) and trace 

element analyses (Table 1). Also pH and EC were measured in laboratory, but the field 

measurements were more reliable and therefore used. Samples were collected to HDPE-

bottles (high density polyethylene). Bottles were rinsed with sampling water two times 

before filling with the sample.) Samples for trace elements and DOC were filtered with 

0.45 µm membrane filters when collected.  HNO3
- acidified syringes, filters and test 

tubes were used with trace element samples. Samples for stable isotopes of hydrogen 

and oxygen , dissolved silica, DOC and trace element were stored and transported in 

cold and dark. Samples for main ion were stored and transported frozen. 

 

Table 1. Conducted analyses 

Analyses Amount of samples (n) 

Trace elements 153 

Stable isotopes δ18O, δD) 143 

Dissolved silica (Dsi) 122 

Dissolved organic carbon (DOC) 97 

Main ions 88 
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Figure 7. Installing mini-piezometer to the peat; A) Hammering an installation pipe to wanted depth (and 
removing wooden plug with a steel rod), B) inserting plastic tube (mini-piezometer) with a mesh tip, C) 
removing installation pipe. (Modified from Lee and Cherry 1987). 

 

Mini-piezometers were used to collect peat pore water samples from different depths 

varying from 0.15 m to 4.82 m. Mini-piezometer consists of a thin plastic tube with a 

perforated end wrapped with mesh netting. They were installed manually using a 

method described by Lee and Cherry (1978). The water for the samples was collected 

with a clean syringe to sample bottles.  

 

 

4.4 Water chemistry and analyzing methods 

 

The interaction between different water sources as well as groundwater and mineral soil 

or bedrock were studied with stable isotopes (18O and D), dissolved silica- (DSi), main 

ions, alkalinity and trace elements as well as dissolved organic carbon (DOC) 

(Appendix 1). The abundance of main ions and trace elements dissolved in groundwater 

reflect the chemistry of areal soil and bedrock even though it often might be hidden 

behind other stronger factors affecting hydrochemistry (Lahermo et al. 1990, 11). Main 

ions dissolved to groundwater are Na+, K+, Ca2+, Mg2+, Cl-, SO4
2- and HCO3

-. Usually 
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they are represented as a content of mg L-1 or ppm (parts per million) (Fetter 2001, 

373). Trace elements are represented as a content of µg L-1 or ppb (parts per million) 

with few exceptions that are more abundant and therefore represented as a content of 

ppm. The time of the mineral – water contact and the mineral composition as well as 

grain size in soil and bedrock affects to the chemical composition of groundwater 

(Lahermo et al. 1990, 11). Main ions were analyzed with ion chromatography (IC) 

following standards of Finnish Standards Association (SFS). Samples with total 

alkalinity more than 0.2 mmol L-1 were diluted with distilled water before measuring 

cations. The ratio of dilution was 1:5 or 1:10 if the alkalinity was more than 1 mmol L-1. 

Cations were analyzed by the standard SFS EN-ISO 14911, and anions by the standard 

SNS EN-ISO 10304. Trace elements were analyzed with ICP-MS (Inductively Coupled 

Plasma Mass Spectrometry) following the standard ISO 17294-2:2003. Main ions and 

trace elements were analyzed at the Department of Geosciences and Geography, 

University of Helsinki. Measurement limits for trace elements and main ions are 

reported in Appendices 2 and 3. 

 

Dissolved organic carbon (DOC) includes organic matter with size smaller than 45 µm 

(Drever 1997, 107). The samples were filtered with 0.45 µm membrane filters to 

exclude larger organic matter. In wetlands the concentration of DOC can be as high as 

60 ppm while groundwater reflects the DOC concentration of rainwater that is 0.5 ppm 

– 1.5 ppm (Drever 1997, 107). Therefore it is a usable variable when recognizing waters 

with groundwater influence, the surface water at the areas of groundwater discharge are 

diluted with the DOC poor groundwater (Sallantaus 2006, 114). Dissolved organic 

carbon was analyzed according to the SFS-EN 1484:1997/OUL standard at the 

laboratory of Ahma Environment Ltd. in Rovaniemi.  

 

4.4.1 Stable isotopes and dissolved silica 

 

Isotopic compositions of oxygen and hydrogen and amount of dissolved silica are 

common variables when studying groundwater surface water interactions (see e.g. 

Landouche and Weng 2005, Rautio 2005). The isotopic composition of groundwater 

commonly reflects the isotopic composition of areal precipitation while the isotopic 

composition of surface water has gone through fractionation by the evapotranspiration 
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(Drever 1997, 314 – 315). The fractionation occurs when lighter oxygen isotope 16O 

and hydrogen isotope 1H evaporates easier than the heavier 18O and D (2H). Ongoing 

evaporation changes the ratio of 18O / 16O and D / 1H and the surface water will become 

depleted in lighter isotopes (Drever 1997, 315). Because of the varying intensity of 

evaporation the isotopic composition of precipitation is not homogenous through the 

globe but it changes with the climate. In Northern Finland the δ18O  / δD is studied to be 

-13.04 ‰/-94.8 ‰ for precipitation and -14.26 ‰ /-104.5 ‰ for groundwater 

(Kortelainen 2007). Isotopic ratio is calculated with the equation 1. 

 

δ18O or δD =  
𝑅𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑅𝑉𝑆𝑀𝑂𝑊

𝑅𝑉𝑆𝑀𝑂𝑊
∗ 1000                 (Eq. 1) 

 

Deuterium excess (d) is also used when inspecting origin of water. It is calculated from 

the measured δD and δ18O values using the equation 2.  

 

𝑑 =  δD – 8δ18O                             (Eq. 2)  

 

D-excess is affected by the humidity, air temperature as well as surface seawater 

temperature (Merlivat and Jouzel, 1979). Therefore it is dependent on the season and 

can globally vary from -2 ‰ to 15 ‰ (Frölich et al. 2002). At areas of temperate 

climate, as in Lapland, the d-excess of precipitation varies from 5 ‰ to 15 ‰ 

(Kortelainen 2007) having an annual mean value approximately 10 ‰ (Kendall and 

Coplen, 2001, Kortelainen 2007). This annual mean value is also visible in 

groundwater. Lower d-excess values may indicate fractionation of the water and thus 

the condition where evaporation has occurred or it can show the annual variation 

(Kendall and Coplen, 2001).  

 

In addition to isotopic composition dissolved silica (DSi) is used to determine 

groundwater discharge to surface waters (Rautio 2005). Because it’s absence in 

precipitation and presence in groundwater, an elevated concentration of DSi is a 

possible sign of a groundwater discharge. The amount of DSi in groundwater is 

dependent on several factors as the grain size of aquifer, amount of CO2 in water and 

the retardation of groundwater in aquifer (Sandborg 1993, 33). In this study DSi is used 

to support results of the isotopic composition.  
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Isotopes were analyzed with Picarro L2120-1 analyzer following the commonly used 

protocol of Laboratory of the University of Helsinki, Department of Geosciences and 

Geography. Samples were filtered with 0.45 µm filter before analyzing. Isotope ratios 

are reported as per mil difference relative to VSMOW (Vienna Standard Mean Ocean 

Water) standard. Dissolved silica was analyzed with ICP-MS (Inductively Coupled 

Plasma Mass Spectrometry) following the standard protocol of the University of 

Helsinki, laboratory of Department of Geosciences and Geography. 

 

 

4.5 Evaluation of the results: Ion balance (IB %) and DOC rich waters 

 

Groundwater is a neutrally charged solution of dissolved anions and cations. Cation – 

anion balance calculations as ion balance calculation (IB %) is used to check the 

reliability of conducted main ion analyses. The ion concentrations are converted to units 

of equivalents per liter and the balance is calculated using equation 3 (Fetter 200, 373). 

 

𝐼𝐵 % =
(∑ 𝑐𝑎𝑡𝑖𝑜𝑛𝑠 – ∑ 𝑎𝑛𝑖𝑜𝑛𝑠)

(∑ 𝑐𝑎𝑡𝑖𝑜𝑛𝑠+ ∑ 𝑎𝑛𝑖𝑜𝑛𝑠)
∗ 100  (Eq. 3) 

 

The difference between negatively charged anions and positively charged cations 

should be less than ±5 % (Fetter 2001, 373) but the organic waters are more complex 

due to the dissolved organic carbon and its dissociation to organic anions. Organic 

compounds are generally composed of carbon skeleton and functional groups attached 

to it (Drever 1997, 107). The most abundant and thus the most important functional 

group of dissolved organic acids is carboxylic acid group: -COOH. All the carboxylic 

acids behave like acid in solutions, but the strength of the acid varies amongst the 

carboxylic acid groups (Drever 1997, 110). pKa value of most of the carboxylic acids 

varies between 3.5 – 5 meaning that most of the acids are dissociated to anion and 

cation in pH 3.5 – 5 (Eq. 4).  

 

  RCOOH = RCOO- + H+    (Eq.4) 
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In natural waters carboxylic acids are usually completely dissociated (Drever 1997, 

110). When studying mire waters, the influence of organic anions cannot be ignored. If 

the concentration of DOC is more than 5 ppm is it reasonable to calculate the amount of 

extra organic anions and include those to the sum of the inorganic anions so the ionic 

balance of anions and cations in water is more reliable. According to Oliver et al. 

(1983) in 1 mg of DOC equals 10 µmol of organic acid groups of which 5 µmol are 

strong organic acids that are dissociated in pH 4.8. In this study organic anions were 

calculated to the sum of all anions using presumption of Oliver et al. (1983) when the 

concentration of DOC is > 5 ppm and pH is 5 or less. The measured main ion 

composition and calculated ionic balance is seen in appendix 3.  

 

 

4.6. Statistic methods and visualization 

 

Different statistic and visualization methods were used to analyze and present results. 

The statistical analyzes as well as boxplots were done with BMI SPSS version 25. Piper 

diagrams were created with AquaChem version 2012.4. Tables and scatter diagrams 

with Microsoft Excel 2016 and maps with ESRI ArcMAP 10.3.1. Maps were modified 

with PDF-XChange editor. 

 

4.6.1 Log10-transformation, comparison of different groups (Mann Whitney U and 

Kruskal-Wallis -tests) and principal component analysis (PCA) 

 

Many of the used statistical methods expect the data to be normally distributed, which is 

rarely the case when working with geochemical data (Reimann and Filzmoser 2000). 

There are several methods that can be used when transforming data normally distributed 

but according many (see e.g. Reimann and Filzmoser 2000, Ranta et al. 2012) one of 

the most used method is log10 transformation that was also used in this study. Before the 

log10 transformation the trace elements and main ions, under the detection limit, got a 

value “½ of the detection limit”. That is a common transformation that must be done, 

before different multivariate methods can be used (Güler et al. 2002).  
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The similarities of different variables between the areas of YES/NO H. vernicosus 

habitats and between areas of shallow and deep peat layer was analyzed with Mann 

Whitney U –test. Mann Whitney U –test is one of the most effective test for comparing 

non-parametric data of two different groups (Ranta et al. 2012). With this analysis it 

was possible to find out which variables differed between the groups (YES/NO H. 

vernicosus or shallow or deep peat layer) and take those for further study. The null 

hypothesis (H0) in Mann Whitney U –test is that the observations between the two 

different groups does not differ and the alternative hypothesis (H1) is that these groups 

are not equal (Ranta et al. 2012). In Mann Whitney U –test the observations are 

arranged to the order from smallest to largest and then replaced with the ordinal 

numbers. The test is based to the distribution of the ordinal numbers (Ranta et al. 2012). 

Kruskal-Wallis one way analysis for variance is used when comparing non-parametric 

observations between several groups. In Kruskal-Wallis test the H0 assumes that all the 

observations are equal between different groups and H1 that at least one group 

differences from the others (Ranta et al. 2012). In this study Kruskal-Wallis test was 

used when comparing variables and areas of different bedrock. 

 

Whit great amount of data the relationships between the variables are often impossible 

to detect without statistical help. The purpose of principal component analysis (PCA) is 

to find these relationships from large amount of data and simplify it by forming new 

variables e.g. principal components (PC) (Ranta et al. 2012). PCA is mainly used when 

analyzing large amount of data but can also be used for smaller datasets when strong 

correlation can is present as presented in Costello and Osborne (2005). In this study the 

dataset is relatively small for PCA, which increases the risk that PCA do not show the 

real connections between the variables if the data quality is not good enough (Ranta et 

al. 2012). The loadings of multiple components must be > 0.5 to qualify the use of PCA 

with small dataset (Costello and Osborne 2005). 

 

 

 

 

 



  

 

30 

5. RESULTS 

 

 

5.1 Electric conductivity, pH and temperature 

 

Variation of EC, pH and temperature (T) between groundwater (GW), peat pore water 

(MP) and surface water (SW) from autumn field work periods are shown in figure 8 and 

in Appendix 4. The clearest difference between SW, GW and MP samples was seen in 

electric conductivity. Electric conductivity of surface water was significantly lower 

compared to the GW and MP samples. The difference between EC of groundwater and 

peat pore water was relatively small. As clear difference between GW, SW and MP was 

not seen when observing pH and T values. The range of pH and temperature was 

greatest in SW samples being relatively stable between MP and GW samples. The EC, 

T and pH measurements were conducted during two different sampling periods in 

September and October 2016. Because of this, it is not possible to examine all the 

measurements together without examining first if there is a difference in results between 

these two sampling periods. According to the pre-examinations it was justified to 

examine all the pH and EC measurements together regardless of sampling periods. Only 

temperature values varied greatly depending on the sampling period and are thus 

observed separately.  

 

A   B 
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C   D 

   

Figure 8. A) pH variation between all GW, MP and SW samples. B) EC variation between all GW, MP and 
SW samples. C and D) Temperature variation between GW, MP and SW samples from different autumn 
sampling periods. 

 

The mean pH value (n =13) of groundwater samples was 6.70 and the overall variation 

5.88 – 7.66. The mean electric conductivity of GW (n =13) was 0.169 mS cm-1 

(variation of 0.06 – 0.32 mS cm-1) and the mean temperature of GW (n =13) 6.99 °C 

(variatio 5.48 – 9.29 °C). Mean value of pH for surface water samples was 5.98 

(variation 3.73 – 7.95). The mean electric conductivity of SW was 0.026 mS cm-1, 

(variation 0.002 – 0.130 mS cm-1). The variation of surface water temperature at 

research area was great (1.63 – 11.39 °C) but there was clear difference depending on 

the sampling period (September – October). Surface water temperature in September 

was generally higher (mean 8.5 °C) than in October (mean 4.2 °C). The peat pore water 

samples had mean pH value 6.49 (variation 3.74 – 8.01). The mean electric conductivity 

of all peat pore water samples was 0.16 mS cm-1 (variation 0.034 – 0.480 mS cm-1) and 

the mean temperature was 4.9 °C (variation 3.3 – 6.6 °C) (Appendix 5). 

 

Comparison of groundwater and surface water samples was not exhaustive because all 

the groundwater pH, EC and temperature measurements were conducted in observation 

wells near Sakatti ore deposits, while there were no pH, EC, T groundwater 

measurements done near Lake Viiankijärvi. When inspecting surroundings of Sakatti 

ore deposit it was possible to notice that measured pH values reflected groundwater 

values more at the margin of Pahanlaaksonmaa than near the main ore deposit and 

Kiimakuusikko (Fig. 9). pH values of surface water near Särkikoskenmaa (East side of 

the Lake Viiankijärvi) and Lake Viiankijärvi varied greatly. Peat pore water pH 

measurements had similar trend with surface water measurements almost in all profiles. 

Peat pore water values are not presented on maps, because there might be several 
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samples taken from the same sampling point from varying depths. Therefore a scatter 

diagram profiles are much more informative when presenting MP measurements. 

 

Figure 9. pH values of groundwater and surface water measurements. (General map Database © NLS 

2014). 
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The comparison of EC between surface water samples and groundwater was not as clear 

as with pH measurements. Surface water values were distinctly lower than measured 

groundwater values (Fig. 10).  

 

Figure 10. pH values of groundwater and surface water measurements. (General map Database © NLS 
2014). 
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5.2 Stable isotope composition, d-excess and DSi 

 

The measured δ18O, δD, d-excess (n = 143) and DSi (n = 122) values are presented in 

Appendix 4. The variation in stable isotopic composition was wide being greatest 

within mini-piezometer samples, following surface water samples and finally 

groundwater and spring water samples that were most uniform (Fig. 11). Mean values 

(δ18O, δD, d-excess) for all mini-piezometer samples (n = 54) was -11.82 ‰, -90.38 ‰, 

4.16 ‰, for surface water samples (n = 54) -11.07 ‰, -83.61 ‰, 4.96 ‰, for 

groundwater samples: (n = 24 measurements from n = 19 observation wells) -12.84 ‰, 

-97.01 ‰, 5.73 ‰ and for spring samples (n = 8): -11.20 ‰, -91.83 ‰, 4.09 ‰ 

(Appendix 5).  

 

 

Figure 11. Isotopic composition of GW, SW, MP and spring samples. 

 

The measured observation wells can be divided in three groups depending on the area of 

location. Observation wells along the river (n = 9, green circles) are mainly located near 

the dam and hydroelectric power plant. This is the area of fluvial sediments. The wells 

near the Sakatti ore deposit are located either on the dry land / at the dryer areas of the 
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mire (n = 4, blue circle) or on the open mire at the margin of Viiankiaapa (n = 6, red 

circle) (Fig. 12). 

 

 

Figure 12. The grouping of the groundwater observation wells by the environment. Green circle: Fluvial 
sediments. Blue circle: Dry land. Red circle: Open mire. (General map Database © NLS 2014). 
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The smallest δ18O values (-14.5 – -13.5 ‰) were measured from the observation wells 

near hydroelectric power plant (upper green circle) as well as from wells located on dry 

land of Kiimakuusikko and Sakatti ore deposit area (blue circle). The highest δ18O 

values (-11.2 – -13.5 ‰) were mainly measured from the observation wells located on 

the open mire south of the Sakatti ore deposit and along the river west of the Sakatti ore 

deposit (red and lower green circles) (Fig. 13). Similar trend was also seen with the 

measured δD values. The smallest d-excess values (d-excess 2.6 – 5.0 ‰) were 

measured from the observation wells located to the open mire, southern side of Sakatti 

ore deposit. The samples with highest values (7.9 – 10.3 ‰) were collected from the 

wells located at the dry land of Kiimakuusikko and on the riverbanks near hydroelectric 

power plant (Fig. 14). All the spring samples were collected from the mire side 

riverbank of River Kitinen, west of Sakatti ore deposit. Samples were collected mainly 

during the summer 2017. The smallest spring water values of δ18O and δD were found 

from the southern part of the river bend while the highest values were measured from 

the springs near the mire margin as well as from the springs located at the northern part 

of river bend. The highest d-excess values in spring samples (6.2 – 7.5 ‰) were located 

correspondingly at the southern part of river bend while the samples with lowest d-

excess (0.7 – 4.0 ‰) located near the mire margin as well as at the northern part of river 

bend. The variation of δ18O of surface water was -13.8 – -8.6 ‰ and δD -101.6 – -68.6 

‰. Within both isotopes the variation was greatest at the area near Sakatti ore deposit 

and most homogenous near the hiking trail and Lake Viiankijärvi. The surface samples 

with smallest values (δ18O -13.8 – -12.3 ‰) were systematically located near the dry 

land while samples with largest values (δ18O -11.2 – -8.6 ‰) were scattered around the 

study area (Fig. 13). The d-excess of surface water samples was highest (6.2 – 9.7 ‰) 

near the Lake Viiankijärvi, at the southern side of Särkikoskenmaa and near the main 

ore body of Sakatti deposit. Near Kiimakuusikko and Pahanlaaksonmaa (around Sakatti 

ore deposit) high values of d-excess corresponded with the smallest values of stable 

isotopes as opposed to Lake Viiankijärvi and Särkikoskenmaa area (Fig. 14). 
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Figure 13. δ18O composition of SW, GW and spring samples. (General map Database © NLS 2014). 
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Figure 14. d-excess values of SW, GW and spring samples. (General map Database © NLS 2014). 

 

The spatial distribution of isotopic composition of peat pore water is difficult to present 

on a map. There may be one or several samples taken from the same location but only 
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one value from random depth, is shown on the map. More informative is to present the 

values in relation to depth. When changes in δ18O composition were inspected, it was 

possible to find three different profile types; 1) strongly descending δ18O values 

(profiles 3, 10, 11, 12, 17 and 19), 2) moderately descending or almost unchanging δ18O 

values (profiles 4, 9, 16, 64 and 66) and 3) moderately increasing δ18O values (profiles 

61, 62, 63 and 65) (Fig. 15). Only profiles reaching to the depth 1 m or more were used.  

 

 

 

Figure 15. Change of δ18O in relation to depth.  

 

The dissolved silica was sampled with the stable isotope sampling. The mean dissolved 

silica of surface water samples was 3.20 ppm (variation of 0.01 – 12.59 ppm) and for 

groundwater samples (n = 16) 6,77 ppm (variation of 1.88 ppm – 11.70 ppm). The 

difference between DSi in surface water and groundwater samples was clear (Fig. 16). 

Profiles 11, 12 and 19 had strongly increasing DSi values when going deeper. Profiles 

17, 60, 61, 63, 64 and 66 had descending values when going deeper. 
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A            B 

 

C 

 

Figure 16. A) DSi in GW and SW samples. B and C) DSi concentration in relation to the depth. 

 

 

5.3 Main ions 

 

5.3.1 General features 

 

Main ionic composition was analyzed from 87 samples. Ionic balance was calculated to 

ensure the reliability of the measurements. Organic anion was included to the total sum 

of anions as explained in Oliver et al. (1983) (Appendix 3). Because of the mire 

environment and presence of organic carbon the limit of acceptance for groundwater 

ionic balance in this study was 20 %, which is slightly higher than usually. Samples 

SAGA103, SAGA303 and SAGA400 did not meet these demands and therefore were 

not inspected with Piper’s diagram. For surface water samples the limit of acceptance of 

ionic balance was 30 % because of the higher amount of organic carbon. Four samples, 
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SASW7, SASW17, SASW33 and SASW39 did not meet these demands. Peat pore 

water samples were not inspected in Piper’s diagram (Fig. 17). 

 

 

Figure 17. Piper’s diagram representing the water types of GW and SW samples. Samples are color-
coded depending of the amount of dissolved organic carbon (no value = < 10 ppm DOC). 

 

General water type for surface water of the mire (n = 39) was Ca-Mg-HCO3 (n = 18) 

and for groundwater (n = 9) was Mg-Ca-HCO3 (n = 5). The variation of all water types 

were relatively small, changing mainly from Mg-Ca-HCO3 type of water to Ca-Mg-

HCO3. Slight spatial variation was visible: Ca-Mg-HCO3 –type waters located mostly 

around Sakatti deposit, within areas of mafic volcanic bedrock as well as South – SW – 

West side of the lake Viiankijärvi, where bedrock consists mostly of graphite paraschist 
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but also mafic volcanic rocks and quartzite. The greatest variations of surface water 

types were found near the furthest end of Viiankiaapa hiking trail, where bedrock 

consists of gabbro, quartzite and siliciclastic sedimentary rock. 

 

5.3.2 Main ions and H. vernicosus, peat depth and varying bedrock 

 

Main ion values for surface water, groundwater and peat pore water samples are 

presented in Appendices 3 and 5. The statistically significant differences (p < 0.05) of 

main ion contents within the areas with and without H. vernicosus habitats and varying 

peat depth were studied with non-parametric Mann-Whitney U test for independent 

samples and for varying bedrock with Kruskal-Wallis test (Appendices 6 and 7). 

Cations were analyzed with ion chromatography (IC) as well as with inductively 

coupled plasma mass spectrometry (ICP-MS) together with trace element analyze. The 

quantity of analyzed samples was greater with ICP-MS and therefore these values are 

used. The IC analyses are used for anions. 

 

Potassium was the only main ion in surface water samples having statistically 

significant difference (p < 0.05) between the areas with and without H. vernicosus 

ecosystems. The concentrations were low at areas with H. vernicosus ecosystems 

compared to the areas without the ecosystems (Fig. 18 A). Chloride had statistically 

significant difference between areas with different bedrock having highest values at the 

areas of gabbroic bedrock and graphite paraschist (Fig. 18 B). No statistically 

significance difference was found when main ions of surface water samples were 

compared with the areas of varying peat depth. 

A   B 

 

Figure 18. A) Potassium concentrations in surface water compared to areas with and without H. 
vernicosus habitats. B) Choride concentrations at the areas with varying bedrock. 
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In peat pore water samples Na and Cl had statistically significant differences between 

the areas with and without H. vernicosus ecosystems. Mg and Ca had statistically 

significant difference when comparing peat pore water with varying peat depth and Na 

and Ca had statistically significant difference when comparing peat pore water within 

areas of different bedrock (Fig. 19).  

A   B 

 

C   D 

 

E   F 

 

Figure 19. A and B) Na and Cl concentrations in peat pore water compared between the areas with and 
without H. vernicosus ecosystems. C and D) Mg and Ca concentrations compared between the areas of 
varying peat depth. E and F) Na and Ca concentrations compared between the areas of varying bedrock.  
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Mg and Ca values were greatest at the areas where peat depth was greater than 1.5 m. 

The highest Ca values of peat pore water were found from the areas of graphite 

paraschist. The highest Na values were found from the areas with gabbroic bedrock 

following graphite paraschist. 

 

The peat pore water values of Ca and Mg were inspected with depth diagrams. These 

two cations are abundant in natural waters and therefore not greatly affected by the 

plant consumption (Lahermo et al. 1996). These are also good indicators of 

groundwater influence as the Mg and Ca bearing rocks are easily weathered (Lahermo 

et al. 1996). Profiles reaching to depth less than one meter were excluded because the 

changes in main ion concentrations did vary greatly in shallow depths and the overall 

trend was not visible in short profiles. Two different trends were found in relation to 

depth; descending or approximately non-changing values (class 1) and increasing values 

(class 2) (Fig. 20). Profiles 17, 60, 61, 62, 63 and 64 had descending or non-changing 

values with both variables while profiles 3, 9, 10, 11, 12. 19 and 66 had increasing Ca 

and Mg values. Especially in profiles 11 and 12 values increased strongly. Descending 

Ca profiles had greater surface water values than the increasing ones but the values 

were mainly similar when going deeper. This trend was also visible in Mg profiles.’ 

 

A   B 
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C   D 

 

Figure 20. A and B) Ca concentrations in relation to depth. C and D) Mg concentrations in relation to 
depth. 

 

5.3.4 Alkalinity 

 

The difference of alkalinity (HCO3
-) content of groundwater, peat pore water and 

surface water was clear. The greatest values and variation was seen within groundwater 

samples following peat pore water and finally surface water (Fig. 22 A). The mean 

value of total alkalinity of surface water samples was 0.171 mmol L-1, variation of 0.00 

– 1.34 mmol L-1. There was no statistically significant difference in alkalinity neither 

between the areas with and without H. vernicosus habitats nor between the areas of 

varying peat depth and bedrock. The mean alkalinity of peat pore water was 0.73 ppm 

(variation 0.00 ppm – 3.25 ppm). There was statistically significant difference between 

the areas of different peat depth and varying bedrock (Appendix 7). Highest alkalinity 

was at areas of graphite paraschist following gabbroic bedrock. Only one sample was 

collected from the area of quartzite bedrock. (Fig. 21 B and C) 

 

A   B 
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C 

 

Figure 21. A) Alkalinity between the GW, MP and SW samples. B) Variation of alkalinity in peat pore water 
between varying peat depth. C) Variation of alkalinity in peat pore water between varying bedrock. 

 

 

5.4 DOC 

 

The difference with dissolved organic carbon in groundwater, surface water and peat 

pore water was clear. DOC of surface water samples had a mean value of 12.89 ppm, 

but the variation was large (3.10 – 65.60 ppm). Peat pore water had mean value of 14.52 

ppm (variation 2.50 – 48.00 ppm) and groundwater 4.68 ppm (variation 1.30 – 12.00 

ppm) (Appendix 5). There was a statistically significant difference in surface water 

samples between the DOC and areas with and without H. vernicosus ecosystems as well 

as between the areas of varying peat depth (Appendix 6). DOC was higher at the areas 

of shallow peat layer as well as near dry land (Fig. 22 and Fig. 23). 
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Figure 22. The distribution of DOC concentration in surface water of aapamire. (General map Database © 
NLS 2014) 

 

Also the areas with the H. vernicosus habitats showed lower DOC concentrations (Fig. 

23).  
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A   B 

 

C   D 

 

Figure 23. A) Variation of DOC concentration between GW, MP and SW samples. B) Variation of surface 
water DOC concentration between areas with varying peat depth. C) Variation of surface water DOC 
concentration between areas with and without H. vernicosus habitats. D) Variation of peat pore water DOC 
concentration between areas with and without H. vernicosus habitats. 

 

 

5.5 Trace elements 

 

Various trace elements were analyzed from 55 water samples. Trace elements with all 

concentrations under the detection limit were excluded (Appendix 2). The surface water 

concentrations were compared with background values presented in Lahermo et al. 

(1990). The variables with elevated concentrations were Mn, Fe, Ni, Zn, Pb, Al, As, Sb, 

Co and Th. Elevated consecrations were found from 24 surface water samples including 

lake and spring samples (Table 2.). The majority of these samples located at the margin 

of the mire, near dry land around Sakatti ore deposit. Samples SW23 and SW55 located 

near the duckboards at the hiking trail. Both lake water samples had elevated 

concentrations, SW47 had elevated Mn and Ni and located near hydroelectric power 

plant, SW24 with elevated Sb and Mn located along the hiking trail. 12 of these were 
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located within mafic volcanic bedrock, six (6) within quartzite, five (5) within graphite 

paraschist and one (1) within bedrock of gabbro.  

 

Table 2. Samples with elevated trace element concentrations. Background values to compare are based 

on Lahermo et al. 1990) 

ID CLASS PROFILE Mn Fe Ni Zn                

      > 150ppb > 3 ppm > 1.5 ppb > 15 ppb  

SW2 SW 23 

 

x x x  

SW5 SW 26 

    

 

SW9 SW 34 x 

   

 

SW10 SW 37 

 

x 

  

 

SW12 SW 39 

  

x 

 

 

SW14 SW 41 x x 

  

 

SW16 SW 43 

    

 

SW17 SW 45 

  

x 

 

 

SW18 SW 47 

  

x 

 

 

SW19 SW 49 x 

 

x 

 

 

SW21 SW 54 

    

 

SW22 SW 21 

  

x 

 

 

SW24 Lake 55 x x 

  

 

SW33 SW 8 

    

 

SW36 SW 59 x x 

  

 

SW37 SW 11 

 

x 

  

 

SW45 Lake 68 x 

 

x 

 

 

SW47 Spring 71 x x x 

 

 

SW48 SW 60 x x x 

 

 

SW49 SW 61 x 

 

x 

 

 

SW50 SW 62 x x 

 

x  

SW51 SW 63 x x 

  

 

SW54 SW 66 x x x 

 

 

SW55 SW 67 x x 

  

 

 

ID CLASS PROFILE Pb Al As Sb Co Th 

  

 

  > 0.5 ppb > 50 ppb > 3 ppb > 0.02 ppb > 1.5 ppb > 0.05 ppb 

SW2 SW 23 

 

x 

 

x x x 

SW5 SW 26 

 

x 

    SW9 SW 34 

      SW10 SW 37 

    

x 

 SW12 SW 39 

 

x 

    SW14 SW 41 

 

x 

 

x x 

 SW16 SW 43 

 

x 

    SW17 SW 45 

 

x 

 

x 

  SW18 SW 47 x x 

 

x 

  SW19 SW 49 

 

x 

 

x x 

 SW21 SW 54 

   

x 

  SW22 SW 21 

 

x 

  

x 

 SW24 Lake 55 

   

x 

  SW33 SW 8 

 

x 

 

x 

  SW36 SW 59 

      SW37 SW 11 

      SW45 Lake 68 

      SW47 Spring 71 

    

x x 

SW48 SW 60 x 

  

x x 
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SW49 SW 61 x 

     SW50 SW 62 

   

x x 

 SW51 SW 63 

      SW54 SW 66 

  

x x x 

 SW55 SW 67 x     x x   

 

In surface water samples of the mire Al, V, Mn, Fe, Co, Ni, Zn, As, Sb, Pb and Th had 

statistically significant difference (p < 0.05) between the areas with and without H. 

vernicosus ecosystems (Fig. 24). Al, V, Cr and Ni had statistically significant difference 

between the areas of varying peat depth (Fig. 25). No statistically significant differences 

were found in surface waters between the areas of different bedrock (Appendix 6). 

More exact inspection was done to those variables with clear difference in concentration 

between groundwater, peat pore water and surface water. With this inspection it was 

possible to say if the trace element content indicates groundwater discharge at the areas 

of H. vernicosus habitats or not. Al, Pb, Th, Zn and Co did not show significant 

differences in concentrations between groundwater and surface water samples. There 

was higher concentrations of Co in peat pore water samples, but this can be explained 

with the higher amount of organic carbon (Lahermo et al. 1996). 
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Figure 24. Left side pictures: Concentrations of several trace elements between GW, MP and SW. Right 
side pictures: Concentrations of several trace elements between the areas with and without H. vernicosus 
habitats. 
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Figure 25. Surface water concentrations of Al, V, Cr and Ni between the areas of varying peat depth. 

 

Generally all the concentrations were higher in groundwater samples following peat 

pore water samples and finally surface water samples. The values were also greater at 

areas without H. vernicosus ecosystems and at the areas of shallow (< 1.5 m) peat 

depth. 

 

In peat pore water samples statistically significant difference between the areas with and 

without H. vernicosus was found with Co, Ni, Cr, Mo and Pd. Depth profiles were 

created with Co, Ni and Cr because in several samples Mo and Pd values were less than 

the detection limit. Profiles reaching at least to the depth of 1.5 m were included. Two 

different of trends were visible 1) curved profiles with small surface water values that 

rapidly increased when going deeper (after 0.5 m – 1 m almost all of the values 

stabilized or began to descend) and 2) Descending values with higher surface water 

values (Fig. 26). Over all the surface water values in class 2 were higher than the 

highest values of in class 1 profiles. 
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A   B 

 

C   D 

 

Figure 26. A, B and C) Co, Ni and Cr concentrations in relation to depth (Class 1). D) Co, Ni, Cr 
concentrations in relation to depth (Class 2). 

 

Al, Mn, Pd and Pt concentrations in peat pore water samples had statistically significant 

difference between the areas of varying peat depth. Fe, Co, Zn, Pd and Sb had 

statistically significant difference between the areas of varying bedrock. Concentration 

difference within the varying bedrock were inspected further to see if the underlying 

bedrock had influence in peat pore water chemistry (Fig. 27). 
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Figure 27. Several trace element concentrations in peat pore water within the varying bedrock. 

 

Co, Zn and Sb values were greater at the areas of quartzite bedrock while Fe and Pd had 

higher concentrations at the areas of graphite paraschist.  

 

 

5.8 Sources of error 

 

Due to high alkalinity some of the samples were diluted with ultrapure water to 1/5 or 

1/10 before measuring main cations with ion chromatography. The results were 

multiplied afterwards, which increase the possibility of error. Main anions where 

measured without dilution. 
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6. DISCUSSION 

 

 

6.1 Hydrogeochemistry; areas of groundwater discharge and influence of the 

bedrock 

 

6.1.1 Groundwater discharge 

 

According to d-excess values and stable isotopes of surface water samples of the mire, 

possible groundwater discharge occurs between Särkikoskenmaa and Lake Viiankijärvi 

as well as around the bird observation tower near the Lake Viiankijärvi. Surface water 

near the main ore body of Sakatti had δ18O and d-excess values that could represent 

possible local groundwater discharge but mainly indicated precipitation of the season 

(Kortelainen 2007) (Fig. 28). Depth profiles of δ18O and DSi composition (presented in 

Ch. 5.2) support the hypothesis of groundwater movement in peat layer between the 

Särkikoskenmaa and Lake Viiankijärvi, mixing with the surface water when migrating 

upwards. In addition the main ion profiles (see Ch. 5.3.2) showed higher main ion 

concentrations deeper in the peat layer near Lake Viiankijärvi, which indicated the 

groundwater flow horizontally through the peat layer. The groundwater discharge areas, 

presented in Fig. 28 support earlier results by Korkka-Niemi et al. (2017) where 

groundwater discharge of the area was studied with thermal infrared survey.  
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Figure 28. Possible areas for groundwater discharge according the stable isotope and main ion results of 
surface water samples in aapamire. (General map Database © NLS 2014, Soil map Database © 
Geological Survey of Finland 2010, Open database © Finnish Environmental Institute 2014). 
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Even though the depth profiles supported groundwater movement and discharge on the 

eastern side of Lake Viiankijärvi, was groundwater influence only slightly visible in 

surface water chemistry. There were still differences when surface and peat pore water 

chemistry of Lake Viiankijärvi and Sakatti area were compared (Fig. 29). Higher pH of 

surface water and peat pore water as well as the higher cation content of peat pore water 

and significantly higher electric conductivity of peat pore water around Lake 

Viiankijärvi area indicate groundwater discharge and movement in peat layer. Also the 

δ18O and d-excess values show groundwater influence at the Lake Viiankijärvi area, 

while Sakatti area had mainly values that indicated precipitation of the season or 

stagnant waters that have been exposed to evaporation. The higher electric conductivity 

of surface water near the Sakatti area could be a sign of individual groundwater 

discharge areas. However it most probably is a result of slightly higher main ion and 

trace element content in surface waters around Sakatti, as seen in Fig 30 and in Fig 34 

presented in chapter 6.1.2. These high element concentrations around Sakatti deposit 

were most likely explained with the presence of ultramafic ore body but also with the 

discharging groundwater at least near the mire margin where the aquifer in fluvial sand 

deposit possibly discharges to the mire.  

  

 

Figure 29. The differences in surface water (1) and peat pore water (2) chemistry between the areas of 

Lake Viiankijärvi and Sakatti ore deposit. 
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Figure 30. Surface water and peat pore water main ion concentrations between the areas of Lake 
Viiankijärvi and Sakatti ore deposit. 

 

This kind of comparison of the areas is highly simplifying and shows only the major 

local variation not the minor. The area around Sakatti deposit is more heterogeneous in 

peat depth and therefore has more changing hydraulic properties than the Lake 

Viiankijärvi site. The possible individual groundwater discharge areas could therefore 

be hidden behind all the other geochemical data. It is also clear that rapid groundwater 

discharge cannot be expected, at least not near the Lake Viiankijärvi area. Because of 

the high peat thickness and state of decomposition the K values might be as low as 10-8 

ms-1 – 10-6 ms-1 (Fraser et al. 2001) and therefore the groundwater seepage must be 

slight. However the lateral groundwater input is known to be an important source of a 

mire hydrology (Ferlatte et al. 2015) and near the area of Särkikoskenmaa sand-gravel 

formation, the groundwater most likely discharges under the Viiankiaapa peat layer as 

seen in peat pore water chemistry and depth profiles taken from the eastern side of Lake 

Viiankijärvi. The discharging groundwater slowly migrates towards the top of the peat 

layer and is most likely diluted with the horizontally flowing mire water, representing 

more surface water like chemistry (Bleuten et al. 2006).  

 

The isotopic composition of groundwater measured from the observation wells and 

springs along the western margin of Viiankiaapa, reflected mainly the typical isotopic 

composition of annual mean precipitation in Middle Lapland area (Kortelainen 2007) 

but few exceptions needed more inspection. The isotopic values in observation wells 

presented in Figure 31 indicated influence of either evaporated surface water or 

season’s rainwater. The lowest (< 5 ‰) d-excess values could be a sign of evaporation 

considering the time of year when sampling was done. In northern Finland d-excess of 
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precipitation during summer and autumn is calculated to be approximately 5 - 10 ‰ 

(Kortelainen 2007). During the fieldwork the autumn in Lapland was relatively dry and 

warm (Finnish Meteorological Institute, 2018). 

 

Figure 31. The groundwater observation wells with surface water like stable isotope composition. (General 
map Database © NLS 2014) 
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One or two of the surface water like values may be explained with the bad condition of 

the observation well i.e. surface water contamination, and some with the bottom depth 

of the observation well. For example observation well SAGA-Itä did not penetrate the 

peat layer and therefore it is obvious that the measured values are more peat pore water 

like than groundwater like. Other observation wells reached either to the moraine and 

gravel or to the bedrock that is known to be weathered at least at the eastern side of 

Pahanlaaksonmaa.  

 

From pH and electrical conductivity diagrams (Fig 32 and 33) it is possible to see that 

half of these observation wells with evaporated waters have pH and EC values that 

resembles groundwater values (Lahermo et al. 1990, 1996). However observation wells 

SAGA-Itä, SAGA103, SAGA203 and SAGA305 had surface water like pH and EC 

values.  

 

 

Figure 32. pH values of the groundwater samples with surface water like stable isotope compositions. 
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Figure 33. EC values of the groundwater samples with surface water like stable isotope compositions. 

 

The stable isotope composition and d-excess of many groundwater and spring water 

samples between Sakatti main ore body and River Kitinen show most likely mixing of 

groundwater and season’s precipitation. This could be explained with the groundwater 

flow direction. The soil beneath the peat layer at the margin of the mire consists of 

fluvial sediments (Åberg et al. 2017a) having high hydraulic conductivity. It is possible 

that the fen mire water infiltrates from the mire through the fluvial soil, mixes with the 

groundwater and discharges to the springs and river Kitinen. Also the water body 

altitude presented in Åberg et al. (2017b) supports the flow direction from Viiankiaapa 

to River Kitinen. This could explain especially the mixed values in springs and 

observation wells at the steepest bend of River Kitinen, where the dry land between 

Kitinen and Viiankiaapa is less than 200 m.  

 

 6.1.2 Hydrogeochemistry and bedrock of study area 

 

The metal content of groundwater reflects in large scale the geochemistry of areal 

bedrock (Lahermo et al. 1990, Tahvanainen et al 2002). The influence of bedrock might 

also be visible in surface water chemistry and peat chemistry as the metals migrate with 
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groundwater flow (Hill and Siegel 1991). The migration depends on how these metals 

behave in environments of changing redox, pH and present organic carbon. The 

ultramafic olivine cumulate Sakatti ore deposit, containing many trace metals, is prone 

to weathering in low temperature and low-pressure environment. These metals may 

locally affect water chemistry and even indicate groundwater discharge elevating the 

metal concentrations in surface water and in peat. The metal content of surface water 

and peat pore water between Sakatti ore deposit area and Lake Viiankijärvi area was 

inspected to see the areal difference (Fig 34). Metals V, Cr, Co, Cu and Ni are abundant 

in ultramafic rocks while As is more common in sulfides (Lahermo et al. 1996). The 

difference between Sakatti and Lake Viiankijärvi areas was clear. The Sakatti ore 

deposit area had higher Co, Cr and Ni content both in surface water as in peat pore 

water values. The difference with Cu and V was not as clear. The Lake Viiankijärvi area 

had significantly higher Arsenic content in peat pore water while the difference was 

minor in surface water. This can be explained with the behavior of the metals. Arsenic 

behaves differently compared to the others. When Co, Cr and Ni are more soluble in 

acid conditions, is arsenic more soluble in neutral or slightly basic conditions (Lahremo 

et al. 1996). The peat pore water around Lake Viiankijärvi had higher pH as presented 

in chapter 6.1.1. 

 

 

Figure 34. The trace element concentrations of surface water and peat pore water between the areas of 
Lake Viiankijärvi and Sakatti ore deposit. 

 

The Sakatti ore deposit area had varying surface water metal concentrations. The areas 

of higher metal content were located near the dry land, around the ore bodies and had 

generally more groundwater like isotopic composition or were known to be 

groundwater fed rivers or springs even though the isotopic composition was surface 

water like (as sampling point SASW47). Lake Viiankijärvi area had only few locations 
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with high metal content but the reason for these content were not as clear as near Sakatti 

ore deposit (Fig. 35). 

 

 

Figure 35. The Ni, Cr and Co concentrations of surface water. 
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The higher trace element concentrations near the main ore body correlated with the 

highest DOC concentrations but also with the most groundwater like isotopic chemistry. 

Profile 9, at the southern margin of main ore body had elevated metal concentrations 

when going deeper (see Ch. 5.5), but this was not seen in surface water chemistry. 

Profiles 66 and 60 between the main ore body and South West ore body had high 

surface water concentrations, but the profiles were descending. All the profiles with 

descending values (see Ch. 5.5) were sampled during the wintertime. The highest metal 

values were found near the bird observation tower, at the southern end of duckboard 

trail near Lake Viiankijärvi. No clear reason for this was found. 

 

 

6.2 Hamatocaulis vernicosus and hydrogeochemistry 

 

According to Finnish environment institute (Endangered species dataset © Hertta 

information system 24.9.2015) the main H. vernicosus habitats (ca. 2000 observations) 

cross the mire as a South West – North East orientated belt spreading also to the 

northern side of Lake Viiankijärvi (Fig 36). 
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Figure 36. Areas of H. vernicosus habitats according to Finnish Environment Institute (FEI). (General map 
Database © NLS 2014, Endangered species dataset © Hertta information system of FEI 24.9.2015). 

 

The areas with H. vernicosus ecosystems had smaller variation in surface water pH and 

higher mean pH than the areas without the ecosystems. The correlation of H. vernicosus 
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and near neutral pH is discovered in several studies (see e.g. Hedenäs and Kooijman 

1995 and Štechová et al. 2008). Electric conductivity of surface water samples was 

lower at the areas of H. vernicosus ecosystems but the values corresponded with the 

values presented in Štechová and Kučera (2007) (Fig. 37).  

 

 

Figure 37. Changes in surface water pH and EC between the areas with and without H. vernicosus 
habitats. 

 

The Ca, Mg and Fe concentrations of surface water samples were lower at the areas of 

H. vernicosus ecosystems while the total alkalinity was higher (Fig. 38). These 

variables have been discovered to correlate positively with H. vernicosus ecosystems 

(see eg. Hedenäs and Kooijman 1995, Štechová and Kučera 2012) even though the 

correlation of iron and abundance of H. vernicosus ecosystems has not been found in 

Štechová and Kučera (2007) and Štechová et al. (2010). The contradiction of higher 

alkalinity but lower Ca and Mg concentration at areas with H. vernicosus is explained 

with the amount of conducted analyzes. Alkalinity was analyzed from the samples that 

were collected for ion chromatography analysis (main ion samples). In these samples 

Sakatti ore deposit area was not as well represented. Ca and Mg were analyzed with ion 

chromatography as well as with ICP-MS (with trace elements). The amount of ICP-MS 

analyzed samples was greater and therefore used. Within these samples the Sakatti ore 

deposit area without H. vernicosus ecosystems is well represented. This elevates the Ca 

and Mg concentrations among the samples taken from “NO H. vernicosus” areas, as the 

Sakatti area had more elevated element concentrations in surface water as presented in 

Ch. 6.1.1 and 6.1.2. When Sakatti area was excluded and Ca as well as Mg was 

compared between the areas with and without H. vernicosus ecosystems the result was 

different and areas with the ecosystems had slightly higher concentrations. However the 

measured Ca and Mg concentrations of areas with H. vernicosus ecosystems 
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corresponded with the concentrations presented in Štechová et al. (2010) but were 

lower that presented in Hedenäs and Kooijman (1995). The iron concentration 

corresponded with the values presented in Hedenäs and Kooijman (1995) while the 

alkalinity was clearly lower. 

 

 

 

Figure 38. Ca, Mg, Fe and total alkalinity of surface water samples at the areas with and without H. 
vernicosus habitats. Ca, Mg and Fe are analyzed with ICP. 

 

The purpose was to conduct sampling at the areas with and without H. vernicosus 

ecosystems near Lake Viiankijärvi and around the Sakatti ore body. However many of 

the “NO ecosystems” areas near Lake Viiankijärvi changed to “YES ecosystems” areas 

after we received the final biological data collected from the mire. This is why the 

“NO” areas located mainly around the Sakatti ore body and were under-represented 

near Lake Viiankijärvi. The higher main ion and trace element concentration in surface 

water around Sakatti was most likely explained with the ore body as presented in Ch. 

6.1.2. Therefore the electric conductivity, main ion as well as the trace element 

concentrations were higher at the areas without H. vernicosus ecosystems (Fig. 39).  
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Figure 39. Trace element concentration of surface water samples between the areas with and H. 

vernicosus ecosystems. 

 

However the concentrations of the Ca, Mg, alkalinity and pH at the areas with the 

ecosystems were similar with the areal spring water chemistry presented in Lahermo et 

al. (1990) indicating possible groundwater influence. The stable isotopic composition 

and d-excess values did not show clear groundwater discharge at the areas of 

ecosystems, on contrary the values resembled slightly more groundwater like values at 

the areas without the ecosystems (Fig 40 A and B). But as seen in Ch. 6.1.1 the stable 

isotopic composition may not be the unambiguous way to investigate groundwater 

discharge at the Viiankiaapa environment. The groundwater influence at areas with the 

H. vernicosus habitats could be seen when inspecting dissolved organic carbon and 

dissolved silica of the surface water samples (Fig. 40 C and D). The high groundwater 

influence is often seen with low DOC values, as presented in Tahvanainen et al. (2002) 

The areas with the ecosystems had considerably lower DOC content than the areas 

without the systems. The mean value of DOC at the area of ecosystems were 8.3 ppm 

while it was 17.7 ppm at the areas without the ecosystems. The higher DSi 

concentration could also indicate groundwater flow while the DSi concentration of 

water increases along the time of groundwater retardation (Sandborg 1993, 33). 
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A   B 

 

C   D 

 

Figure 40. A and B) The δ18O and d-excess values between the areas without H. vernicosus habitats. C 
and D) the DOC and DSi values between the areas with and without H. vernicosus habitats. 

 

DOC, pH, alkalinity, DSi and main ion results at the areas of H. vernicosus ecosystems 

could indicate the groundwater discharge even though it does not show in stable 

isotopes. The variation of different elements and parameters was smaller at the areas 

where the ecosystems thrive. This could be the result of groundwater discharge as it is 

known that the wetlands and mires where groundwater discharges have more stable 

environment in nutrient and water supply (Mitch and Gosselink, 2007, 113). 

 

6.2.1 Principal component analysis, surface water and H. vernicosus 

 

Even the surface water concentrations of dissolved elements were low there was 

statistically significant differences between the areas with and without H. vernicosus 

ecosystems (Appendix 6). A principal component analysis (PCA) was done with surface 

water samples to determine major variables that influence surface water chemistry. 

Variables were included based on the correlation matrix and the analysis was conducted 
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for major ions, EC, pH, DOC and isotopes as well as for most of the trace elements. 

First five principal components (Eigenvalue > 1) explained 79.5 % of the total variance. 

The principal component groups (PC1 – PC5) are presented in Table 3 Variable 

loadings are seen in Appendix 8. 

 

Table 3. Principal component groups. 

PC1 PC2 PC3 PC4 PC5 

DOC Tot-Alkalinity δ18O pH Na 

Cl Mg δD Cd K 

Al Ca DSi   

V Ba SO4
2-   

Mn     

Fe     

Co     

Ni     

Zn     

As     

Sb     

Pb     

 

Factor loadings of PC2 and PC3 were greater at the areas of H. vernicosus ecosystems 

while PC1 and PC5 had lower loadings (Fig. 41). PC4 did not have significant 

difference between the areas of with and without H. vernicosus ecosystems. 
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Figure 41. Factor loadings of surface water samples. 

 

The loadings of PC2 and PC3 were higher in surface water samples from areas of H. 

vernicosus ecosystems. While the loadings of PC1 and PC5 were lower at the areas of 

ecosystems. According to the principal component analysis H. vernicosus seem to 

prefer areas of Ca, Mg and DSi bearing waters with higher alkalinity. In other hand it 

seems to avoid areas of high DOC concentrations and elements connected to the 

presence of organic carbon. These results indicate the groundwater influence at the 

areas of H. vernicosus habitats. 

 

 

6.3 Hamatocaulis vernicosus and the depth of mire 

 

The correlation of H. vernicosus ecosystems and thickness of peat layer is presented in 

report by Korkka-Niemi et al. (2017). The report shows that H. vernicosus ecosystems 

thrive at the areas where peat thickness is between 2 – 4 m, while fewer ecosystems 

were found at the areas of thinner and thicker peat layer. In this study the sampling 

points were divided in two different categories depending on the thickness of the peat 
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layer; shallow (< 2 m) and deep (> 2 m) areas. The peat thickness presented in Åberg et 

al (2017) was used in this categorization.  

 

The differences in pH, DOC, Mg and Ca between shallow and deep peat depth are 

presented in figure 42 The differences in chemistry between varying peat thickness 

were clear. The areas with peat depth > 2 m peat had higher pH values and higher Ca, 

Mg and alkalinity surface water concentrations as well as lower DOC concentrations. 

 

 

 

 

Figure 42. Surface water concentrations between the areas of deep and shallow peat layer. 

 

These results indicate that the water chemistry at the areas of deeper peat layer is more 

suitable for H. vernicosus habitats. The deeper peat layer is known to have less water 
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table fluctuation, which is one of the main factors affecting positively to the size of H. 

vernicosus ecosystems (Štechová and Kučera 2012).  

 

 

7. CONCLUSIONS 

 

According to the results few possible groundwater discharge areas were detected. The 

groundwater movement between Särkikoskenmaa and Lake Viiankijärvi can be seen in 

d-excess, pH results and depth profiles of sable isotopes and main ions. However the 

groundwater discharge was not as clear around Sakatti ore body, where isotopic 

composition of surface water samples represented mainly season’s precipitation. Still 

some locations near Sakatti main ore deposit and Pahanlaaksonmaa had indications of 

groundwater discharge. The stable isotope composition of spring and groundwater 

samples near Sakatti ore deposit, at the area where the dry land between River Kitinen 

and Viiankiaapa is narrowest, indicated mixing of season’s precipitation and 

groundwater. Most probably the mire water infiltrates through the peat layer and the 

fluvial sand deposits, mixing with the groundwater, finally discharging to the springs 

and River Kitinen. It is also possible that there is a good local hydraulic conductivity at 

that area, caused by bedrock fracturing. The bedrock is observed to be weathered at 

least around SAGA403 observation pipe. This weathered bedrock could possibly create 

good hydraulic connection and allow the surface water influence bedrock groundwater 

also near the other observation wells. The Sakatti ore body seems to have influence to 

the areal hydrogeochemistry. Many of the trace element contents (especially Cr, Co and 

Ni) as well as main ions were elevated in peat pore water and surface water near the ore 

body. The highest metal contents correlated with the high DOC concentration as 

expected.  

 

There was no single factor in Viiankiaapa mire creating a favorable environment for H. 

vernicosus. Clearest correlation was found with H. vernicosus habitats and the thickness 

of peat layer. A ribbon-shaped zone of habitats and 2 – 4 m thick peat layer crossed the 

mire from South West to North East and to the northern side of Lake Viiankijärvi. It is 

highly possible that the zone with certain peat thickness creates environment of stable 

water table that is neither too low nor too high. The positive correlation between H. 
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vernicosus ecosystems and high Mg and Ca concentrations has been found in earlier 

studies. In this study the correlation was not plain because the hydrogeochemistry of 

Sakatti ore deposit area complicated the interpretation. The areas with the H. vernicosus 

ecosystems seemed to have lower Ca and Mg concentrations. When Sakatti area was 

excluded and areas with and without H. ecosystems were re-compared were the results 

reverse and areas with H. vernicosus ecosystems seemed to have slightly higher Ca and 

Mg concentrations. It seems that the high element concentrations at the area of Sakatti 

ore deposit twist the results and one must be careful when making interpretation. 

Interpretation is more difficult knowing that most of the samples taken from the area 

without H. vernicosus ecosystems are located near Sakatti ore deposit. Even though the 

Ca and Mg seemed to be low at the areas with the H. vernicosus ecosystems, the 

concentrations did represented areal spring water chemistry, as did the measured pH and 

alkalinity values. This could indicate possible groundwater influence at the areas of the 

ecosystems. The groundwater migration through the peat layer might be very slow and 

therefore the water will be diluted with the surface water. This hinders the detection of 

groundwater in hydrogeochemical analyzes. Many measured factors had smaller 

variation at the areas of H. vernicosus ecosystems than at the areas without the 

ecosystems. This could indicate more stable environment and supply of nutrients and 

therefore the influence of groundwater discharge. 

 

The sampling campaign was planned before additional H. vernicosus mapping results 

collected during summer 2016. Therefore the samples taken from the areas without H. 

vernicosus habitats are under-represented and located mainly within small area near 

Sakatti ore deposit. Because of the specific hydrogeochemistry of the Sakatti area, the 

comparison between areas with and without H. vernicosus habitats has to be done with 

care. Sampling was conducted during autumn and springtime, which affected to the 

concentration differences in samples. The winter sample profiles had certain kind of 

trend in trace element, main ions and stable isotope chemistry that differed from the 

profiles sampled in autumn. 
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Appendix 1 Conducted water sample analyses 

 

 

ID Y X 
CLA
SS Date 

Pro
file 

E
C  

p
H 

T 
°C 

Trac
e el. 

Isoto
pes 

D
Si 

D
O
C 

Main 
ions Bedrock 

Bedrock (Anglo 
American) 

SASW1 
749459
5 490720 SW 

13.9.2
016 22 x x x x x x x x 

Mafic 
volcanic 

rock 
 

SASW2 
749355
8 491703 SW 

13.9.2
016 23 x x x x x x x x Gabbro 

 

SASW3 
749345
5 491842 SW 

13.9.2
016 24 x x x x x x x x 

Quarzite/G
abbro 

 

SASW4 
749320
1 491702 SW 

13.9.2
016 25 x x x x x x x x Gabbro 

 

SASW5 
749344
2 492419 SW 

13.9.2
016 26 x x x x x x x x Quarzite 

 

SASW6 
749363
7 492072 SW 

13.9.2
016 27 x x x x x x x x Quartzite 

 

SASW7 
749542
1 489488 SW 

13.9.2
016 28 x x x x x x x x 

Graphite 
paraschist 

 SAGA40
5 

749259
1.823 

488867
.0841 GW 

13.9.2
016 29 x x x x x x x x Quarzite Breccia 

SAGA30
5 

749258
8.244 

488865
.7046 GW 

13.9.2
016 30 x x x x x x x x Quarzite Breccia 

SAGA20
3 

749258
4.016 

488864
.6851 GW 

13.9.2
016 31 x x x x x x x x Quarzite Breccia 

SASW8 
749249
2 489130 SW 

14.9.2
016 32 x x x x x x x x 

Mafic 
volcanic 

rock Peridotite 

SAGA10
3 

749175
0 489177 GW 

14.9.2
016 33 x x x x x x x x 

Mafic 
volcanic 

rock 
 

SASW9 
749175
0 489177 SW 

14.9.2
016 34 x x x x x x x x 

Mafic 
volcanic 

rock 
 

SAGA40
3 

749171
6 489162 GW 

14.9.2
016 35 x x x x x x x x 

Mafic 
volcanic 

rock 
 

SAGA30
3 

749167
3 489140 GW 

14.9.2
016 36 x x x x x x x x 

Mafic 
volcanic 

rock 
 

SASW10 
749167
3 489140 SW 

14.9.2
016 37 x x x x x x x x 

Mafic 
volcanic 

rock 
 

SASW11 
749211
3 489155 SW 

14.9.2
016 38 x x x x x x x x 

Mafic 
volcanic 

rock Aphanitic 

SASW12 
749211
3 489079 SW 

14.9.2
016 39 x x x x x x x x 

Mafic 
volcanic 

rock Aphanitic 

SASW13 
749222
3 489115 SW 

14.9.2
016 40 x x x x x x x x 

Mafic 
volcanic 

rock Mafic suite 

SASW14 
749235
4 489077 SW 

14.9.2
016 41 x x x x x x x x 

Mafic 
volcanic 

rock Peridotite 

SASW15 
749242
9 488840 SW 

14.9.2
016 42 x x x x x x x x Quarzite Breccia 

SASW16 
749337
9 489493 SW 

14.9.2
016 43 x x x x x x x x Quarzite 

 SAGA20
1 

749305
7 489665 GW 

14.9.2
016 44 x x x x x x x x Quarzite 

 

SASW17 
749306
1 489641 SW 

14.9.2
016 45 x x x x x x x x Quarzite 

 SAGA40
0 

749303
9 489862 GW 

14.9.2
016 46 x x x x x x x x Quarzite 

 

SASW18 
749253
4 489735 SW 

14.9.2
016 47 x x x x x x x x 

Mafic 
volcanic 

rock Breccia 

SAGA20
2 

749227
5 489611 GW 

14.9.2
016 

 
x x x x x x x x 

Mafic 
volcanic 

rock Peridotite 

SASW19 
749227
5 489611 SW 

14.9.2
016 48 x x x x x x x x 

Mafic 
volcanic 

rock Peridotite 

SASW20 
749212
2 489780 SW 

14.9.2
016 49 x x x x x x x x 

Mafic 
volcanic 

rock Aphanitic 

SAGA-
itä 

749192
3 489851 GW 

14.9.2
016 50 x x x x x x x x 

Mafic 
volcanic 

rock 
 

SAGA-
keski 

749192
3 489851 GW 

14.9.2
016 51 x x x x x x x x 

Mafic 
volcanic 

rock 
 

SAGA-
etelä 

749192
3 489851 GW 

14.9.2
016 52 x x x x x x x x 

Mafic 
volcanic 

rock 
 

SASW21 
749192
3 489851 SW 

14.9.2
016 53 x x x x x x x x 

Mafic 
volcanic 

rock 
 YSI 

meas 
749547
3 490296 SW 

15.9.2
016 54 x x x 

     

Graphite 
paraschist 

 

SASW22 
749545
8 490259 SW 

15.9.2
016 

 
x x x x x x x x 

Graphite 
paraschist 

 

MP1 
749545
8 490259 MP 

15.9.2
016 21 

    
x 

 
x 

 

Graphite 
paraschist 

 

SASW23 
749560
5 490602 SW 

15.9.2
016 20 x x x x x x x x 

Graphite 
paraschist 

 



Appendix 1 Conducted water sample analyses 

 

ID Y X 
CLA
SS Date 

Pro
file 

E
C  

p
H 

T 
°C 

Trac
e el. 

Isoto
pes 

D
Si 

D
O
C 

Main 
ions Bedrock 

Bedrock (Anglo 
American) 

MP2 
749560
5 490602 MP 

15.9.2
016 20 x x 

 
x x x x x 

Graphite 
paraschist 

 

SASW24 
749510
1 490990 SW 

15.9.2
016 

 
x x x x x x x x 

Graphite 
paraschist 

 

SASW25 
749509
1 490966 SW 

15.9.2
016 

 
x x x x x x x x 

Graphite 
paraschist 

 

SASW26 
749445
4 491808 SW 

15.9.2
016 19 x x x x x x x x Gabbro 

 

MP3 
749445
4 491808 MP 

15.9.2
016 19 x x 

 
x x x x x Gabbro 

 

MP4 
749445
4 491808 MP 

15.9.2
016 19 x x 

 
x x x x x Gabbro 

 

MP5 
749445
4 491808 MP 

15.9.2
016 19 x x 

 
x x x x x Gabbro 

 

MP6 
749233
0 489066 MP 

17.10.
2016 1 x x x x x x x x 

Mafic 
volcanic 

rock Peridotite 

MP7 
749256
1 489418 MP 

18.10.
2016 2 x x x x x x x x 

Mafic 
volcanic 

rock Breccia 

SASW27 
749256
1 489418 SW 

18.10.
2016 2 x x x x x x x x 

Mafic 
volcanic 

rock Breccia 

SASW28 
749197
6 489447 SW 

18.10.
2016 3 x x x x x x x x 

Mafic 
volcanic 

rock Aphanitic 

MP8 
749197
6 489447 MP 

18.10.
2016 3 x x x x x x x x 

Mafic 
volcanic 

rock Aphanitic 

MP9 
749197
6 489447 MP 

18.10.
2016 3 x x x x x x x x 

Mafic 
volcanic 

rock Aphanitic 

SASW29 
749193
0 489704 SW 

18.10.
2016 4 x x x x x x x x 

Mafic 
volcanic 

rock 
 

MP10 
749193
0 489704 MP 

18.10.
2016 4 x x x x x x x x 

Mafic 
volcanic 

rock 
 

MP11 
749193
0 489704 MP 

18.10.
2016 4 x x x x x x x x 

Mafic 
volcanic 

rock 
 

SASW30 
749218
3 489778 SW 

18.10.
2016 5 x x x x x x x x 

Mafic 
volcanic 

rock Peridotite 

MP12 
749218
3 489778 MP 

18.10.
2016 5 x 

 
x x x x x x 

Mafic 
volcanic 

rock Peridotite 

SW31 
749216
4 489478 SW 

18.10.
2016 6 x x x x x x x x 

Mafic 
volcanic 

rock Aphanitic 

MP13 
749216
4 489478 MP 

18.10.
2016 6 x x x x x x x x 

Mafic 
volcanic 

rock Aphanitic 

SASW32 
749335
0 489534 SW 

19.10.
2016 7 x x x x x x x x Quarzite 

 

MP14 
749335
0 489534 MP 

19.10.
2016 7 x x x x x x x x Quarzite 

 

GA300 
749253
3 489739 GW 

19.10.
2016 

 
x x x x x x x x 

Mafic 
volcanic 

rock Breccia 

MP15 
749253
3 489739 MP 

19.10.
2016 

    

x x x x x 

Mafic 
volcanic 

rock Breccia 

SASW33 
749244
7 489715 SW 

19.10.
2016 8 x x x x x x x x 

Mafic 
volcanic 

rock Peridotite 

MP16 
749244
7 489715 MP 

19.10.
2016 8 x x x x x x x x 

Mafic 
volcanic 

rock Peridotite 

SASW34 
749212
0 489732 SW 

19.10.
2016 9 x x x x x x x x 

Mafic 
volcanic 

rock Aphanitic 

MP17 
749212
0 489732 MP 

19.10.
2016 9 x x x x x x x x 

Mafic 
volcanic 

rock Aphanitic 

MP18 
749212
0 489732 MP 

19.10.
2016 9 x x x x x x x x 

Mafic 
volcanic 

rock Aphanitic 

MP19 
749212
0 489732 MP 

19.10.
2016 9 x x x x x x x x 

Mafic 
volcanic 

rock Aphanitic 

MP20 
749212
0 489732 MP 

19.10.
2016 9 x x x x x x x x 

Mafic 
volcanic 

rock Aphanitic 

SASW35 
749223
5 490021 SW 

19.10.
2016 10 x x x x x x x x 

Mafic 
volcanic 

rock Aphanitic 

MP21 
749223
5 490021 MP 

19.10.
2016 10 x x x x x x x x 

Mafic 
volcanic 

rock Aphanitic 

MP22 
749223
5 490021 MP 

19.10.
2016 10 x x x x x x x x 

Mafic 
volcanic 

rock Aphanitic 

SASW36 
749278
7 490136 SW 

19.10.
2016 

 
x x x x x x x x Quarzite Volcanioclastic 



Appendix 1 Conducted water sample analyses 

 

ID Y X 
CLA
SS Date 

Pro
file 

E
C  

p
H 

T 
°C 

Trac
e el. 

Isoto
pes 

D
Si 

D
O
C 

Main 
ions Bedrock 

Bedrock (Anglo 
American) 

SASW37 
749469
7 491636 SW 

20.10.
2016 11 x x x x x x x x 

Graphite 
paraschist 

 

MP23 
749469
7 491636 MP 

20.10.
2016 11 

   
x 

    

Graphite 
paraschist 

 

MP24 
749469
7 491636 MP 

20.10.
2016 11 x x x x x x x x 

Graphite 
paraschist 

 

MP25 
749469
7 491636 MP 

20.10.
2016 11 x x x x x x x x 

Graphite 
paraschist 

 

MP26 
749469
7 491636 MP 

20.10.
2016 11 x x x x 

    

Graphite 
paraschist 

 

MP27 
749469
7 491636 MP 

20.10.
2016 11 x x x x x x x x 

Graphite 
paraschist 

 YSI 
meas 

749469
7 491636 

 

20.10.
2016 11 x x x 

     

Graphite 
paraschist 

 

SASW38 
749498
4 491857 SW 

20.10.
2016 12 x x x x x x x x 

Graphite 
paraschist 

 

MP28 
749498
4 491857 MP 

20.10.
2016 12 x x x x x x x x 

Graphite 
paraschist 

 

MP29 
749498
4 491857 MP 

20.10.
2016 12 x 

  
x 

    

Graphite 
paraschist 

 

MP30 
749498
4 491857 MP 

20.10.
2016 12 x x x x x x x x 

Graphite 
paraschist 

 

MP31 
749498
4 491857 MP 

20.10.
2016 12 x x x x x x x x 

Graphite 
paraschist 

 

MP32 
749498
4 491857 MP 

20.10.
2016 12 x 

 
x x 

    

Graphite 
paraschist 

 

SASW39 
749336
8 491765 SW 

20.10.
2016 13 x x x x x x x x Gabbro 

 

MP33 
749336
8 491765 MP 

20.10.
2016 13 x 

  
x 

    
Gabbro 

 

MP34 
749336
8 491765 MP 

20.10.
2016 13 x x x x x x x x Gabbro 

 

MP35 
749336
8 491765 MP 

20.10.
2016 13 x x x x 

    
Gabbro 

 

SASW40 
749319
3 492247 SW 

20.10.
2016 14 x x x x x x x x Quarzite 

 

MP36 
749319
3 492247 MP 

20.10.
2016 14 

   
x 

  
x 

 
Quarzite 

 

MP37 
749319
3 492247 MP 

20.10.
2016 14 

   
x 

  
x 

 
Quarzite 

 

MP38 
749319
3 492247 MP 

20.10.
2016 14 

   
x 

  
x 

 
Quarzite 

 

MP39 
749319
3 492247 MP 

20.10.
2016 14 

   
x 

  
x 

 
Quarzite 

 

SASW41 
749394
4 491160 SW 

20.10.
2016 15 x x x x x x x x Quarzite 

 

MP40 
749394
4 491160 MP 

20.10.
2016 15 

   
x x x x 

 
Quarzite 

 

SASW42 
749217
1 489027 SW 

21.10.
2016 16 x x x x x x x x 

Mafic 
volcanic 

rock Mafic suite 

MP41 
749217
1 489027 MP 

21.10.
2016 16 

   
x 

    

Mafic 
volcanic 

rock Mafic suite 

MP42 
749217
1 489027 MP 

21.10.
2016 16 x 

  

x 
    

Mafic 
volcanic 

rock Mafic suite 

MP43 
749217
1 489027 MP 

21.10.
2016 16 x x x x x x x x 

Mafic 
volcanic 

rock Mafic suite 

YSI 
meas 

749217
1 489027 

  

16 x x x 
     

Mafic 
volcanic 

rock Mafic suite 

MP44 
749217
1 489027 MP 

21.10.
2016 16 x x x x x x x x 

Mafic 
volcanic 

rock Mafic suite 

SASW43 
749145
8 488456 SW 

21.10.
2016 17 x x x x x x x x 

Mafic 
volcanic 

rock 
Fine grained 

ultramafic 

MP45 
749145
8 488456 MP 

21.10.
2016 17 x x x x x x x x 

Mafic 
volcanic 

rock 
Fine grained 

ultramafic 

MP46 
749145
8 488456 MP 

21.10.
2016 17 x x x x x x x x 

Mafic 
volcanic 

rock 
Fine grained 

ultramafic 

MP47 
749145
8 488456 MP 

21.10.
2016 17 x x x x x x x x 

Mafic 
volcanic 

rock 
Fine grained 

ultramafic 

SASW44 
749160
5 488515 SW 

21.10.
2016 18 x x x x x x x x 

Mafic 
volcanic 

rock 
 

MP48 
749160
5 488515 MP 

21.10.
2016 18 x 

  
x x x x 

 

Mafic 
volcanic 

rock 
 

SASW45 
749638
2.659 

489419
.697 

LAK
E 

27.3.2
017 68 

    
x x x x 

  SAGA40
5B 

749259
1.823 

488867
.0841 GW 

27.3.2
017 29 

    
x x x x 

  SAGA30
5B 

749258
8.244 

488865
.7046 GW 

27.3.2
017 30 

    
x x x x 

  SAGA20
3B 

749258
4.016 

488864
.6851 GW 

27.3.2
017 31 

    
x x x x 

  



Appendix 1 Conducted water sample analyses 

 

ID Y X 
CLA
SS Date 

Pro
file 

E
C  

p
H 

T 
°C 

Trac
e el. 

Isoto
pes 

D
Si 

D
O
C 

Main 
ions Bedrock 

Bedrock (Anglo 
American) 

SASW46 
749267
9.493 

488780
.94 

SPR
ING 

27.3.2
017 69 

    
x x x x 

  

MP49 
749499
3.7 

491893
.493 MP 

29.3.2
017 70 

    
x x x x 

  

SASW47 
749241
2.999 

488645
.944 

SPR
ING 

29.3.2
017 71 

    
x x x x 

  

SASW48 
749179
7.046 

488658
.679 SW 

29.3.2
017 60 

    
x x x x 

  

MP50 
749179
7.046 

488658
.679 MP 

29.3.2
017 60 

    
x x x x 

  

SASW49 
749180
9.094 

488972
.918 SW 

29.3.2
017 61 

    
x x x x 

  

MP51 
749180
9.094 

488972
.918 MP 

29.3.2
017 61 

    
x x x x 

  

SASW50 
749213
7.024 

490493
.775 SW 

31.3.2
017 62 

    
x x x 

   

MP52 
749213
7.024 

490493
.775 MP 

31.3.2
017 62 

    
x x x x 

  

MP53 
749213
7.024 

490493
.775 MP 

31.3.2
017 62 

    
x x x x 

  

MP54 
749213
7.024 

490493
.775 MP 

31.3.2
017 62 

    
x x x x 

  

MP55 
749213
7.024 

490493
.775 MP 

31.3.2
017 62 

    
x x x x 

  

SASW51 
749283
4.98 

490651
.92 SW 

31.3.2
017 63 

    
x x x x 

  

MP56 
749283
4.98 

490651
.92 MP 

31.3.2
017 63 

    
x x x x 

  

SASW52 
749171
0.167 

489171
.17 SW 

1.4.20
17 64 

    
x x x x 

  

MP57 
749171
0.167 

489171
.17 MP 

1.4.20
17 64 

    
x x x x 

  

MP58 
749171
0.167 

489171
.17 MP 

1.4.20
17 64 

    
x x x x 

  

SASW53 
749133
5.963 

489076
.686 SW 

1.4.20
17 65 

    
x x x 

   

MP59 
749133
5.963 

489076
.686 MP 

1.4.20
17 65 

    
x x x x 

  

MP60 
749133
5.963 

489076
.686 MP 

1.4.20
17 65 

       
x 

  

MP61 
749133
5.963 

489076
.686 MP 

1.4.20
17 65 

    
x x x x 

  

MP62 
749133
5.963 

489076
.686 MP 

1.4.20
17 65 

    
x x x x 

  

MP63 
749133
5.963 

489076
.686 MP 

1.4.20
17 65 

    
x x x x 

  

SASW54 
749187
4.329 

488836
.35 SW 

1.4.20
17 66 

    
x x x x 

  

MP64 
749187
4.329 

488836
.35 MP 

1.4.20
17 66 

    
x x x x 

  

MP65 
749187
4.329 

488836
.35 MP 

1.4.20
17 66 

    
x x x x 

  

SASW55 
749524
8.757 

489723
.391 SW 

2.4.20
17 67 

    
x x x x 

  

MP66 
749524
8.757 

489723
.391 MP 

2.4.20
17 67 

    
x x x x 

  17HYDO
22/P8 

749559
0 489477 GW 

Summ
er 

     
x x x 

   17GA40
5 

749259
1.823 

488867
.0841 GW 

Summ
er 

     
x x x 

   17GA20
3 

749258
4.016 

488864
.6851 GW 

Summ
er 

     
x x x 

   17HYDO
16/P9 

749500
7 489405 GW 

Summ
er 

     
x x x 

   17HYDO
21/P7 

749600
3 489474 GW 

Summ
er 

     
x x x 

   17HYDO
20/P6 

749628
6 489839 GW 

Summ
er 

     
x x x 

   17HYDO
15/P4 

749489
9.5 

489766
.1 GW 

Summ
er 

     
x x x 

   17HYDO
19/P5 

749666
2 490037 GW 

Summ
er 

     
x x x 

   17SPRIN
G1 

749288
0 488923 

SPR
ING 

Summ
er 

     
x x x 

   17SPRIN
G2 

749287
8 488914 

SPR
ING 

Summ
er 

     
x x x 

   17SPRIN
G3 

749300
6 488977 

SPR
ING 

Summ
er 

     
x x x 

   17SPRIN
G4 

749268
5 488781 

SPR
ING 

Summ
er 

     
x x x 

   17SPRIN
G5 

749262
9 488763 

SPR
ING 

Summ
er 

     
x x x 

   17SPRIN
G6 

749238
1 488253 

SPR
ING 

Summ
er 

     
x x x 

   17SPRIN
G7 

749245
0 488508 

SPR
ING 

Summ
er 

     
x x x 

   17SPRIN
G8 

749240
8 488746 

SPR
ING 

Summ
er 

     
x x x 

   17RIVER
1 

749291
5 488937 SW 

Summ
er 

     
x x x 

   



Appendix 1 Conducted water sample analyses 

 

ID Y X 
CLA
SS Date 

Pro
file 

E
C  

p
H 

T 
°C 

Trac
e el. 

Isoto
pes 

D
Si 

D
O
C 

Main 
ions Bedrock 

Bedrock (Anglo 
American) 

17SUO1 
749152
9 488469 SW 

Summ
er 

     
x x x 

   17Kärvä
slampi 

749300
7 489039 SW 

Summ
er 

     
x x x 

   



Appendix 2. Trace element 

 

 

  

23  

Na  [ 

1 ]  

24  

Mg  [ 

1 ]  

27  Al  [ 

1 ]  

39  K  

[ 1 ]  

44  

Ca  [ 

1 ]  

51  V  

[ 1 ]  

52  

Cr  [ 

1 ]  

55  

Mn  [ 

1 ]  

56  Fe  

[ 1 ]  

59  

Co  [ 

1 ]  

60  Ni  [ 

1 ]  

63  Cu  

[ 1 ]  

66  Zn  

[ 1 ]  

75  As  

[ 1 ]  

95  Mo  

[ 1 ]  

101  Ru  

[ 2 ]  

105  Pd  

[ 2 ]  

107  Ag  

[ 2 ]  

111  Cd  

[ 2 ]  

121  

Sb  [ 

2 ]  

137  

Ba  [ 

2 ]  

189  Os  

[ 2 ]  

193  Ir  

[ 2 ]  

195  Pt  

[ 2 ]  

208  Pb  

[ 2 ]  

232  Th  

[ 2 ]  

238  U  

[ 2 ]  

Sample 

Name 

Conc. 

[ ppm 

] 

Conc. 

[ ppm 

] 

Conc. [ 

ppb ] 

Conc. 

[ ppm 
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[ ppb 

] 

Conc. 

[ ppb 

] 

Conc. 

[ ppm ] 

Conc. 

[ ppb 

] 

Conc. [ 

ppb ] 

Conc. [ 

ppb ] 

Conc. 
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ppb ] 

Conc. [ 

ppb ] 

Detection 

limit 10σ 

0.02 0.00 0.92 0.01 0.01 0.004 0.11 0.1 0.0001 0.01 0.0709 0.0837 0.04 0.122 0.0980 0.0037 0.0065 0.0069 0.0126 0.001 0.04 0.0072 0.0015 0.0005 0.0049 0.0013 0.0022 

Sample                                                       

SW1 0.2 0.3 5.4 0.03 0.78 0.02 0.25 12.2 0.15 0.03 <0.0709 <0.0837 1.66 <0.1220 0.14 <0.0037 <0.0065 <0.0069 <0.0126 0.007 1.6 <0.0072 <0.0015 0.0027 0.0285 <0.0013 <0.0022 

SW2 1.8 2.2 963.3 0.33 2.82 3.06 20.35 125.0 6.42 7.88 11.21 1.64 71.24 0.52 <0.0980 <0.0037 0.038 <0.0069 0.044 0.053 8.5 <0.0072 <0.0015 0.0044 0.4142 0.232 0.035 

SW3 1.3 0.7 3.7 0.03 1.73 0.01 0.13 0.7 0.06 0.02 <0.0709 0.10 1.86 <0.1220 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.005 2.1 <0.0072 <0.0015 0.0016 0.0132 <0.0013 <0.0022 

SW4 0.1 0.4 6.9 0.05 0.60 0.03 0.25 11.7 0.42 0.12 0.10 0.17 2.28 <0.1220 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.011 0.5 <0.0072 <0.0015 0.0015 0.0248 <0.0013 <0.0022 

SW5 1.1 0.8 54.9 0.02 1.25 0.09 2.79 17.5 0.79 0.48 0.80 <0.0837 1.95 0.18 <0.0980 <0.0037 0.007 <0.0069 <0.0126 0.015 3.6 <0.0072 <0.0015 0.0016 0.0501 0.014 <0.0022 

SW6 1.0 0.5 16.0 0.08 1.02 0.04 1.38 14.4 0.49 0.45 0.48 <0.0837 1.29 0.13 <0.0980 <0.0037 <0.0065 <0.0069 0.013 0.013 2.3 <0.0072 <0.0015 0.0013 0.0211 0.004 <0.0022 

SW7 0.3 0.4 6.4 0.18 1.27 0.02 0.22 13.3 0.07 0.04 <0.0709 <0.0837 3.60 <0.1220 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.007 1.5 <0.0072 <0.0015 0.0014 0.0079 <0.0013 <0.0022 

GA405 1.9 10.0 5.6 0.83 21.78 0.31 0.79 241.3 9.53 0.18 0.40 <0.0837 0.58 1.64 0.18 <0.0037 0.041 <0.0069 <0.0126 0.006 31.4 <0.0072 <0.0015 0.0020 <0.0049 <0.0013 0.009 

GA305 1.6 4.0 6.7 0.54 5.36 0.03 0.27 1.5 0.02 0.06 0.19 0.30 1.07 <0.1220 <0.0980 <0.0037 0.027 <0.0069 <0.0126 0.016 5.3 <0.0072 <0.0015 0.0014 0.0060 <0.0013 0.007 

GA203 1.6 3.8 6.6 0.50 5.18 0.07 0.31 4.8 0.00 0.05 <0.0709 0.18 1.61 <0.1220 <0.0980 <0.0037 0.028 <0.0069 <0.0126 0.052 3.8 <0.0072 <0.0015 0.0005 0.0098 <0.0013 0.019 

SW8 0.8 0.8 11.1 0.27 2.06 0.03 0.37 15.8 0.28 0.09 0.14 <0.0837 2.01 <0.1220 <0.0980 <0.0037 0.008 <0.0069 <0.0126 0.007 3.0 <0.0072 <0.0015 0.0015 0.0106 <0.0013 <0.0022 

GA103 0.7 1.4 10.5 0.07 4.52 0.04 0.24 74.6 6.20 0.52 0.10 <0.0837 1.49 0.49 <0.0980 <0.0037 0.017 <0.0069 <0.0126 0.016 9.8 <0.0072 <0.0015 0.0011 0.0102 <0.0013 <0.0022 

SW9 0.9 0.9 4.6 0.19 2.10 0.01 0.20 0.7 0.16 0.03 <0.0709 <0.0837 0.96 <0.1220 <0.0980 <0.0037 0.008 <0.0069 <0.0126 0.005 3.8 <0.0072 <0.0015 0.0013 0.0334 <0.0013 <0.0022 

GA403 3.4 7.7 8.4 0.97 26.06 2.37 6.34 197.5 17.56 0.49 1.04 <0.0837 0.71 4.62 0.31 <0.0037 0.078 <0.0069 <0.0126 0.019 45.8 <0.0072 <0.0015 0.0024 0.0183 0.003 0.055 

GA303 2.3 5.3 26.9 0.64 16.06 4.70 11.20 425.9 27.76 2.94 3.47 0.10 2.70 4.05 0.27 <0.0037 0.073 <0.0069 <0.0126 0.098 88.0 <0.0072 <0.0015 0.0021 0.0301 0.052 0.234 

SW10 0.8 0.4 5.1 0.11 1.10 0.02 0.18 7.1 0.08 0.07 <0.0709 <0.0837 3.34 <0.1220 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.005 2.7 <0.0072 <0.0015 0.0008 <0.0049 <0.0013 <0.0022 

SW11 0.9 0.7 5.2 0.17 1.31 0.02 0.35 8.0 0.07 0.03 <0.0709 <0.0837 2.12 <0.1220 <0.0980 <0.0037 0.007 <0.0069 <0.0126 0.007 2.5 <0.0072 <0.0015 <0.0005 0.0052 <0.0013 <0.0022 

SW12 1.1 2.1 52.6 0.53 4.23 0.09 1.01 30.5 0.20 0.18 2.33 0.29 0.54 <0.1220 <0.0980 <0.0037 0.024 <0.0069 <0.0126 0.007 8.0 <0.0072 <0.0015 0.0009 0.0167 0.020 0.012 

SW13 0.8 0.7 8.7 0.16 1.55 0.02 0.34 1.4 0.13 0.03 <0.0709 <0.0837 3.03 <0.1220 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.006 3.3 <0.0072 <0.0015 <0.0005 0.0092 <0.0013 <0.0022 

SW14 1.5 9.6 133.7 0.98 11.39 1.37 3.22 522.4 4.56 3.01 1.32 0.43 7.33 0.61 <0.0980 <0.0037 0.054 <0.0069 0.013 0.020 15.3 <0.0072 <0.0015 <0.0005 0.2550 0.041 0.013 

SW15 0.9 0.7 7.5 0.15 1.48 0.02 0.21 83.5 0.19 0.22 <0.0709 <0.0837 1.61 0.14 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.005 2.8 <0.0072 <0.0015 <0.0005 <0.0049 <0.0013 <0.0022 

SW16 1.1 0.8 50.4 0.06 1.84 0.27 0.79 13.2 0.48 0.20 0.31 <0.0837 2.71 0.18 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.011 1.9 <0.0072 <0.0015 <0.0005 0.1551 0.003 <0.0022 

GA201 26.7 1.2 6.3 1.02 3.34 1.26 0.35 20.3 0.01 0.50 1.42 0.12 0.23 0.64 0.33 <0.0037 0.024 <0.0069 <0.0126 0.720 15.0 <0.0072 <0.0015 <0.0005 <0.0049 <0.0013 0.237 

SW17 0.9 0.6 385.9 0.05 0.86 0.55 1.74 14.7 1.15 0.82 1.75 0.31 7.09 0.24 <0.0980 <0.0037 0.011 0.011 0.014 0.056 6.0 <0.0072 <0.0015 0.0005 0.4501 0.025 <0.0022 

GA400 1.9 2.3 6.2 0.62 6.50 0.07 0.36 2.2 0.00 0.01 <0.0709 0.11 0.11 <0.1220 <0.0980 <0.0037 0.027 <0.0069 <0.0126 0.013 4.2 <0.0072 <0.0015 <0.0005 0.0078 <0.0013 0.054 

MP10 0.1 3.3 14.3 0.05 12.28 0.09 0.31 291.8 31.88 2.73 0.51 <0.0837 2.98 1.25 <0.0980 <0.0037 0.039 <0.0069 <0.0126 0.016 18.9 <0.0072 <0.0015 0.0011 0.0204 <0.0013 <0.0022 

MP11 0.1 1.7 7.4 0.05 7.66 0.04 0.38 216.5 26.82 2.26 0.17 <0.0837 1.07 0.98 <0.0980 <0.0037 0.026 <0.0069 <0.0126 0.016 13.2 <0.0072 <0.0015 0.0006 0.0149 <0.0013 <0.0022 

SW30 0.2 0.2 4.2 0.02 0.47 0.01 0.16 10.5 0.02 0.12 <0.0709 <0.0837 2.32 <0.1220 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.004 0.8 <0.0072 <0.0015 <0.0005 <0.0049 <0.0013 <0.0022 

MP12 0.5 1.3 28.4 0.59 3.54 0.07 0.55 188.3 23.34 2.15 1.57 0.59 21.34 2.00 0.27 <0.0037 0.011 <0.0069 0.019 0.036 7.4 <0.0072 <0.0015 0.0027 0.0350 <0.0013 0.003 

MP12? 0.2 3.1 10.6 0.04 10.18 0.04 0.58 362.4 36.13 3.28 4.92 0.18 26.60 1.32 <0.0980 <0.0037 0.032 <0.0069 0.028 0.105 23.1 <0.0072 <0.0015 0.0019 0.0169 <0.0013 <0.0022 

SW31 0.2 0.9 3.9 0.03 2.03 0.01 0.29 0.6 0.03 0.02 <0.0709 <0.0837 1.87 <0.1220 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.005 2.6 <0.0072 <0.0015 <0.0005 0.0055 <0.0013 <0.0022 

SW32 0.4 0.6 6.4 0.02 1.06 0.02 0.24 12.9 0.24 0.23 <0.0709 <0.0837 2.18 0.18 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.009 1.3 <0.0072 <0.0015 <0.0005 0.0109 <0.0013 <0.0022 
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[ ppm 

] 

Conc. 

[ ppb 

] 

Conc. 

[ ppb 

] 

Conc. 

[ ppb 

] 

Conc. 

[ ppm ] 

Conc. 

[ ppb 

] 

Conc. [ 

ppb ] 

Conc. [ 

ppb ] 

Conc. 

[ ppb ] 

Conc. [ 

ppb ] 

Conc. [ 

ppb ] 

Conc. [ 

ppb ] 

Conc. [ 

ppb ] 

Conc. [ 

ppb ] 

Conc. [ 

ppb ] 

Conc. 

[ ppb 

] 

Conc. 

[ ppb 

] 

Conc. [ 

ppb ] 

Conc. [ 

ppb ] 

Conc. [ 

ppb ] 

Conc. [ 

ppb ] 

Conc. [ 

ppb ] 

Conc. [ 

ppb ] 

MP14 0.3 0.5 19.6 0.07 1.29 0.06 0.38 59.8 7.59 1.12 0.28 0.21 2.85 1.12 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.009 1.8 <0.0072 <0.0015 <0.0005 0.0450 <0.0013 <0.0022 

GA300 10.8 1.3 48.8 0.72 5.90 1.19 2.04 390.8 0.41 3.20 3.38 15.29 861.25 0.29 0.13 <0.0037 0.079 <0.0069 0.045 0.131 31.4 <0.0072 <0.0015 0.0014 0.2513 0.074 0.206 

MP15 1.4 0.5 565.5 0.08 1.04 1.17 3.20 14.2 1.15 0.72 2.01 0.40 16.11 0.31 <0.0980 <0.0037 0.016 <0.0069 0.016 0.049 5.8 <0.0072 <0.0015 0.0017 0.6169 0.046 0.019 

SW33 0.1 0.4 96.7 0.02 0.25 0.27 1.11 17.8 0.50 0.30 1.01 0.28 3.88 0.15 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.024 1.0 <0.0072 <0.0015 <0.0005 0.1879 0.009 <0.0022 

MP16 0.4 0.6 233.3 0.10 1.21 0.52 1.54 16.7 1.20 0.66 1.79 0.48 9.98 0.26 <0.0980 <0.0037 0.010 <0.0069 0.022 0.034 5.3 <0.0072 <0.0015 <0.0005 1.0516 0.014 0.003 

SW34 0.2 0.5 14.7 0.03 1.16 0.02 0.26 32.0 0.18 0.22 <0.0709 <0.0837 2.71 <0.1220 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.011 2.0 <0.0072 <0.0015 0.0034 0.0146 <0.0013 <0.0022 

MP17 0.4 3.0 20.8 0.08 7.78 0.01 0.28 223.9 18.21 1.59 1.70 <0.0837 3.98 3.84 <0.0980 <0.0037 0.019 <0.0069 <0.0126 0.012 12.6 <0.0072 <0.0015 0.0029 0.0200 <0.0013 <0.0022 

MP18 0.3 3.0 18.9 0.04 7.77 0.02 0.31 220.8 18.03 1.63 1.78 0.22 4.53 3.75 <0.0980 <0.0037 0.019 <0.0069 <0.0126 0.018 13.5 <0.0072 <0.0015 0.0019 0.0966 <0.0013 <0.0022 

MP19 0.3 1.7 23.4 0.04 5.95 0.03 0.36 217.5 16.79 1.59 1.49 0.10 4.05 1.21 <0.0980 <0.0037 0.014 <0.0069 <0.0126 0.019 8.5 <0.0072 <0.0015 0.0018 0.0458 <0.0013 <0.0022 

MP20 0.3 1.5 6.4 0.21 5.18 0.02 0.43 197.6 15.80 1.44 1.52 <0.0837 10.49 0.97 <0.0980 <0.0037 0.013 <0.0069 <0.0126 0.019 6.9 <0.0072 <0.0015 0.0007 0.0550 <0.0013 <0.0022 

SW35 0.1 0.3 2.7 0.02 0.72 0.01 0.20 10.3 0.07 0.05 <0.0709 <0.0837 2.22 <0.1220 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.009 0.8 <0.0072 <0.0015 <0.0005 0.0068 <0.0013 <0.0022 

MP21 0.1 1.0 16.3 0.03 4.65 0.03 0.53 133.3 19.69 1.04 1.77 <0.0837 18.72 2.93 <0.0980 <0.0037 0.014 <0.0069 <0.0126 0.009 7.3 <0.0072 <0.0015 0.0014 0.0214 <0.0013 <0.0022 

MP22 0.1 0.6 5.5 0.12 2.11 0.02 0.64 100.7 14.80 0.72 0.49 <0.0837 10.31 1.68 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.017 3.4 <0.0072 <0.0015 <0.0005 0.0529 <0.0013 <0.0022 

SW36 0.3 1.2 4.2 0.04 2.40 0.02 0.33 186.9 4.85 0.83 0.17 <0.0837 1.82 0.21 <0.0980 <0.0037 0.007 <0.0069 <0.0126 0.005 2.4 <0.0072 <0.0015 <0.0005 0.0554 <0.0013 <0.0022 

SW37 0.4 1.7 6.1 0.06 5.50 0.02 0.16 93.4 7.34 0.67 0.07 <0.0837 7.09 0.87 <0.0980 <0.0037 0.013 <0.0069 <0.0126 0.014 6.6 <0.0072 <0.0015 <0.0005 0.0117 <0.0013 <0.0022 

MP23 3.5 8.5 10.9 0.17 37.48 0.40 1.92 446.0 30.05 1.05 2.48 0.14 25.26 10.79 0.39 <0.0037 0.102 <0.0069 <0.0126 0.012 21.5 <0.0072 <0.0015 0.0012 0.0252 0.006 0.006 

MP24 2.6 11.6 8.0 0.03 53.59 0.04 0.64 555.4 26.68 1.07 0.72 <0.0837 1.69 9.37 <0.0980 <0.0037 0.130 <0.0069 <0.0126 0.004 30.0 <0.0072 <0.0015 0.0013 0.0052 0.002 <0.0022 

MP25 1.4 11.5 9.7 0.05 51.24 0.03 0.48 531.5 47.84 1.47 0.42 <0.0837 50.63 11.40 <0.0980 <0.0037 0.124 <0.0069 0.013 0.011 34.2 <0.0072 <0.0015 0.0010 0.0112 <0.0013 <0.0022 

SW19 1.1 0.6 573.3 0.07 1.00 1.19 2.59 17.5 1.29 0.79 1.97 0.46 6.79 0.22 <0.0980 <0.0037 0.012 <0.0069 0.072 0.048 7.8 <0.0072 <0.0015 0.0008 0.8679 0.051 0.006 

SW20 3.8 8.1 12.3 1.47 9.53 0.54 0.22 219.6 0.02 0.89 3.97 0.15 0.27 <0.1220 0.10 <0.0037 0.036 <0.0069 <0.0126 0.028 20.0 <0.0072 <0.0015 0.0008 0.0145 <0.0013 0.066 

SW19 1.3 1.7 167.3 0.33 2.11 0.45 3.39 172.6 2.56 1.51 1.96 0.20 5.65 0.25 <0.0980 <0.0037 0.013 <0.0069 <0.0126 0.022 4.2 <0.0072 <0.0015 0.0092 0.2517 0.037 0.007 

SW20 0.5 0.2 4.0 0.03 0.66 0.01 0.17 16.4 0.10 0.12 <0.0709 <0.0837 1.47 <0.1220 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.004 1.1 <0.0072 <0.0015 0.0006 <0.0049 <0.0013 <0.0022 

ITÄ 0.3 2.8 96.8 0.05 8.88 2.03 0.80 197.9 16.96 1.48 0.56 0.09 12.29 1.76 <0.0980 <0.0037 0.026 <0.0069 <0.0126 0.038 11.7 <0.0072 <0.0015 0.0008 0.4123 0.017 0.047 

KESKI 4.2 16.9 4.8 1.42 23.03 0.29 0.61 505.9 7.11 0.53 2.83 <0.0837 1.00 2.40 0.29 <0.0037 0.064 <0.0069 <0.0126 0.018 62.1 <0.0072 <0.0015 0.0016 0.0085 <0.0013 0.043 

ETELÄ 3.5 20.8 2.9 1.97 21.98 0.13 0.42 103.1 0.96 0.10 1.28 <0.0837 4.39 1.24 0.36 <0.0037 0.076 <0.0069 <0.0126 0.134 47.1 <0.0072 <0.0015 0.0017 0.0132 <0.0013 0.014 

SW21 1.0 0.6 4.7 0.24 1.65 0.03 0.36 9.0 0.39 0.09 <0.0709 0.24 2.89 0.16 <0.0980 <0.0037 0.007 <0.0069 <0.0126 0.102 2.6 <0.0072 <0.0015 <0.0005 0.0158 <0.0013 <0.0022 

SW22 0.9 0.5 58.3 0.30 1.21 0.15 2.28 33.8 1.49 2.10 1.77 0.18 2.17 0.86 <0.0980 <0.0037 0.009 <0.0069 <0.0126 0.013 3.3 <0.0072 <0.0015 0.0012 0.0390 0.016 <0.0022 

SW23 0.5 0.2 6.2 0.10 0.37 0.02 0.14 32.1 0.02 0.01 <0.0709 <0.0837 2.68 <0.1220 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.008 0.3 <0.0072 <0.0015 0.0005 0.0181 <0.0013 <0.0022 

MP3 1.9 4.2 10.6 0.09 15.22 0.01 0.28 223.0 8.75 1.79 0.82 0.23 2.76 0.48 0.13 <0.0037 0.023 <0.0069 0.015 0.056 13.8 <0.0072 <0.0015 0.0020 0.0438 <0.0013 <0.0022 

MP1 1.9 0.6 254.4 0.23 2.81 6.14 9.24 91.3 21.33 0.75 0.68 0.28 0.57 3.21 <0.0980 <0.0037 0.021 <0.0069 <0.0126 0.015 13.9 <0.0072 <0.0015 0.0017 0.0304 0.123 0.032 

MP2 0.1 1.0 7.3 0.15 5.91 0.02 0.14 99.3 3.24 0.41 0.20 <0.0837 1.09 0.38 <0.0980 <0.0037 0.015 <0.0069 <0.0126 0.008 7.3 <0.0072 <0.0015 0.0008 0.0228 <0.0013 0.002 

SW24 1.1 1.1 40.6 0.56 4.93 0.26 0.47 301.7 3.35 0.41 0.60 2.33 13.08 0.30 <0.0980 <0.0037 0.016 0.016 0.028 0.032 10.0 <0.0072 <0.0015 <0.0005 0.1200 0.004 <0.0022 

SW25 0.4 0.5 7.7 0.17 2.10 0.03 0.31 30.2 0.30 0.04 <0.0709 <0.0837 1.95 <0.1220 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.014 2.0 <0.0072 <0.0015 0.0008 0.0289 <0.0013 <0.0022 

SW26 1.4 0.4 5.6 0.16 0.86 0.02 0.20 15.7 0.24 0.11 <0.0709 0.35 3.52 <0.1220 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.014 0.8 <0.0072 <0.0015 <0.0005 0.0189 <0.0013 <0.0022 
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Sample 

Name 

Conc. 
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] 
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] 
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] 
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] 
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] 
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] 
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Conc. [ 
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ppb ] 

MP4 0.5 3.0 28.4 0.08 9.16 0.02 0.40 149.6 8.04 1.82 1.00 0.30 3.63 0.46 <0.0980 <0.0037 0.018 <0.0069 <0.0126 0.035 10.9 <0.0072 <0.0015 0.0016 0.0326 <0.0013 <0.0022 

MP5 2.7 4.5 6.1 0.33 15.06 0.01 0.25 228.1 10.04 1.56 0.45 <0.0837 1.50 0.32 <0.0980 <0.0037 0.022 <0.0069 <0.0126 0.005 12.5 <0.0072 <0.0015 0.0013 0.0420 <0.0013 <0.0022 

MP6 1.6 7.3 40.4 0.11 11.31 1.47 3.29 318.5 15.76 2.18 1.84 0.24 4.32 1.92 0.11 <0.0037 0.038 <0.0069 <0.0126 0.079 15.5 <0.0072 <0.0015 0.0010 0.0388 0.021 0.007 

MP7 3.1 8.3 9.4 1.32 17.40 0.17 0.56 3.4 0.51 0.28 0.23 0.19 1.63 0.53 <0.0980 <0.0037 0.031 <0.0069 <0.0126 0.027 7.4 <0.0072 <0.0015 0.0012 0.0382 <0.0013 <0.0022 

SW27 1.8 1.7 11.2 0.16 1.88 0.03 0.45 0.4 0.09 0.03 <0.0709 <0.0837 0.64 <0.1220 <0.0980 <0.0037 0.010 <0.0069 <0.0126 0.006 2.8 <0.0072 <0.0015 <0.0005 0.0139 <0.0013 <0.0022 

SW28 0.6 1.1 4.6 0.08 2.67 0.02 0.26 28.0 0.61 0.17 <0.0709 <0.0837 1.48 0.14 <0.0980 <0.0037 0.009 <0.0069 <0.0126 0.004 3.6 <0.0072 <0.0015 0.0006 <0.0049 <0.0013 <0.0022 

MP8 1.1 3.4 22.3 0.27 7.44 0.60 1.07 229.2 15.02 1.82 0.44 0.15 28.21 1.04 <0.0980 <0.0037 0.024 <0.0069 <0.0126 0.033 11.5 <0.0072 <0.0015 0.0012 0.0217 0.003 <0.0022 

MP9 0.8 3.3 272.1 0.16 7.35 1.58 2.87 191.2 11.93 1.83 1.12 1.58 27.04 0.90 <0.0980 <0.0037 0.024 <0.0069 <0.0126 0.103 10.9 <0.0072 <0.0015 0.0038 0.5810 0.049 0.026 

SW29 0.2 0.5 2.5 0.03 1.55 0.01 0.29 20.2 0.08 0.12 <0.0709 <0.0837 1.19 <0.1220 <0.0980 <0.0037 0.007 <0.0069 <0.0126 0.003 3.1 <0.0072 <0.0015 <0.0005 0.0065 <0.0013 <0.0022 

MP26 0.3 7.2 6.3 0.07 31.65 0.02 0.69 327.7 83.50 1.80 0.37 <0.0837 45.37 14.71 <0.0980 <0.0037 0.078 <0.0069 <0.0126 0.015 27.6 <0.0072 <0.0015 0.0014 0.0150 <0.0013 <0.0022 

MP27 0.2 2.8 7.7 0.18 13.05 0.03 0.47 225.6 84.03 1.66 0.39 <0.0837 129.65 12.20 <0.0980 <0.0037 0.033 <0.0069 <0.0126 0.023 11.3 <0.0072 <0.0015 0.0010 0.0808 <0.0013 <0.0022 

SW38 0.9 0.7 4.0 0.05 2.45 0.01 0.38 1.5 0.08 0.02 <0.0709 <0.0837 0.40 <0.1220 <0.0980 <0.0037 0.007 <0.0069 <0.0126 0.006 1.1 <0.0072 <0.0015 0.0010 0.0079 <0.0013 <0.0022 

MP28 2.1 7.0 5.8 0.95 31.61 0.03 0.51 239.3 8.64 0.07 0.13 0.31 4.85 0.47 <0.0980 <0.0037 0.074 <0.0069 <0.0126 0.007 21.8 <0.0072 <0.0015 0.0007 0.0222 <0.0013 <0.0022 

MP29 1.8 6.2 23.8 0.80 28.20 0.03 0.46 215.4 6.75 0.12 0.26 0.11 14.99 0.44 <0.0980 <0.0037 0.064 <0.0069 <0.0126 0.030 19.5 <0.0072 <0.0015 0.0030 0.0202 <0.0013 <0.0022 

MP30 1.7 5.1 5.2 0.32 24.44 0.02 0.50 205.3 8.50 0.18 0.20 <0.0837 22.75 0.67 <0.0980 <0.0037 0.055 <0.0069 <0.0126 0.015 19.0 <0.0072 <0.0015 0.0006 0.0262 <0.0013 <0.0022 

MP31 1.0 1.8 12.3 0.11 8.11 0.01 0.48 118.7 5.48 0.23 0.13 <0.0837 32.34 1.16 <0.0980 <0.0037 0.020 <0.0069 <0.0126 0.046 5.2 <0.0072 <0.0015 0.0014 0.0152 <0.0013 <0.0022 

MP32 0.9 0.9 10.6 0.21 5.05 0.01 0.58 92.8 3.41 0.17 <0.0709 0.12 30.01 0.62 <0.0980 <0.0037 0.011 <0.0069 <0.0126 0.053 3.7 <0.0072 <0.0015 0.0010 0.1081 <0.0013 <0.0022 

SW39 0.9 0.3 3.9 0.04 0.78 0.01 0.14 10.2 0.15 0.03 <0.0709 <0.0837 0.76 <0.1220 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.006 0.6 <0.0072 <0.0015 <0.0005 <0.0049 <0.0013 <0.0022 

MP33 2.8 5.7 33.4 1.07 13.81 0.20 1.25 584.0 19.89 4.02 1.67 1.14 34.48 10.72 <0.0980 <0.0037 0.034 <0.0069 0.035 0.031 15.8 <0.0072 <0.0015 0.0026 0.1364 0.005 0.004 

MP34 0.2 2.7 4.9 0.04 8.28 0.02 0.58 217.5 18.45 1.81 0.55 0.12 2.94 2.27 <0.0980 <0.0037 0.018 <0.0069 <0.0126 0.007 9.5 <0.0072 <0.0015 0.0007 0.0483 <0.0013 <0.0022 

MP35 0.4 2.3 6.1 0.07 6.87 0.02 0.31 118.6 12.65 0.61 0.16 <0.0837 1.35 0.74 <0.0980 <0.0037 0.016 <0.0069 <0.0126 0.009 4.2 <0.0072 <0.0015 0.0010 0.1089 <0.0013 <0.0022 

SW40 0.8 0.4 3.3 0.03 1.05 0.01 0.23 3.5 0.10 0.03 <0.0709 <0.0837 0.65 <0.1220 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.005 0.9 <0.0072 <0.0015 <0.0005 <0.0049 <0.0013 <0.0022 

MP36 1.2 2.2 16.6 0.18 8.19 0.33 0.53 113.7 0.13 0.44 1.24 0.75 81.43 4.55 0.50 <0.0037 0.014 <0.0069 <0.0126 0.026 10.0 <0.0072 <0.0015 0.0018 0.0386 <0.0013 <0.0022 

MP37 1.1 2.3 24.9 0.07 7.60 0.02 0.31 120.6 1.26 0.58 0.75 0.27 6.58 2.00 <0.0980 <0.0037 0.015 <0.0069 <0.0126 0.048 10.1 <0.0072 <0.0015 0.0025 0.0186 <0.0013 <0.0022 

MP38 1.2 1.6 11.4 0.09 5.68 0.02 0.26 94.3 0.58 0.41 0.28 <0.0837 3.97 1.02 <0.0980 <0.0037 0.011 <0.0069 <0.0126 0.015 8.6 <0.0072 <0.0015 0.0022 0.0084 <0.0013 <0.0022 

MP39 1.0 1.1 12.7 0.11 4.00 0.04 0.35 70.4 0.15 0.21 <0.0709 0.26 7.92 0.54 <0.0980 <0.0037 0.007 <0.0069 <0.0126 0.021 6.1 <0.0072 <0.0015 0.0015 0.0145 <0.0013 <0.0022 

SW41 0.3 0.7 3.3 0.04 2.50 0.01 0.21 3.0 0.08 0.03 <0.0709 <0.0837 0.98 <0.1220 <0.0980 <0.0037 0.007 <0.0069 <0.0126 0.006 2.2 <0.0072 <0.0015 <0.0005 <0.0049 <0.0013 <0.0022 

MP40 0.3 4.9 11.6 0.12 17.98 0.01 0.41 396.0 16.05 0.99 0.18 0.10 7.86 0.78 <0.0980 <0.0037 0.039 <0.0069 <0.0126 0.030 12.9 <0.0072 <0.0015 0.0010 0.0433 <0.0013 <0.0022 

SW42 0.7 0.7 <0.9234 0.06 1.66 0.01 0.36 2.7 0.05 0.03 <0.0709 <0.0837 0.91 <0.1220 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.007 2.5 <0.0072 <0.0015 0.0006 <0.0049 <0.0013 <0.0022 

MP41 0.8 1.1 33.1 0.84 3.71 0.46 0.82 100.7 3.25 0.60 0.95 1.21 18.88 1.41 <0.0980 <0.0037 0.018 <0.0069 <0.0126 0.064 10.3 <0.0072 <0.0015 0.0035 0.0385 0.002 <0.0022 

MP42 0.3 1.2 32.4 0.17 4.47 0.02 0.42 139.5 6.03 1.55 1.37 0.21 14.45 0.69 <0.0980 <0.0037 0.015 <0.0069 0.015 0.051 11.7 <0.0072 <0.0015 0.0062 0.0240 <0.0013 <0.0022 

MP43 0.5 1.4 4.5 0.12 4.52 0.03 0.41 144.5 28.62 1.62 0.30 <0.0837 11.98 2.25 <0.0980 <0.0037 0.014 <0.0069 <0.0126 0.013 9.6 <0.0072 <0.0015 0.0010 0.0109 <0.0013 <0.0022 

MP44 0.5 0.8 60.0 0.31 2.56 0.03 0.50 108.1 6.33 0.72 0.12 0.13 11.43 0.43 <0.0980 <0.0037 0.009 <0.0069 <0.0126 0.019 4.4 <0.0072 <0.0015 0.0016 0.0290 <0.0013 <0.0022 

SW43 0.1 0.9 3.9 0.06 2.31 0.00 0.27 2.0 0.02 0.03 <0.0709 <0.0837 2.40 <0.1220 <0.0980 <0.0037 0.008 <0.0069 <0.0126 0.006 4.6 <0.0072 <0.0015 0.0007 <0.0049 <0.0013 <0.0022 



Appendix 2. Trace element 

 

 

Groundwater samples are marked with green color. Bolded values are over the background values. 
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MP45 0.5 1.3 31.2 0.05 4.71 0.10 0.38 100.9 8.63 0.83 0.33 <0.0837 2.04 0.62 <0.0980 <0.0037 0.015 <0.0069 <0.0126 0.015 9.2 <0.0072 <0.0015 0.0007 <0.0049 <0.0013 <0.0022 

MP46 0.2 2.4 5.0 0.08 7.34 0.02 0.41 155.2 19.77 1.42 0.39 <0.0837 3.91 0.89 <0.0980 <0.0037 0.023 <0.0069 <0.0126 0.015 14.3 <0.0072 <0.0015 0.0012 0.0661 <0.0013 <0.0022 

MP47 0.3 0.8 6.1 0.34 2.47 0.03 0.53 54.7 3.61 0.45 0.12 <0.0837 13.85 0.18 <0.0980 <0.0037 0.008 <0.0069 <0.0126 0.040 6.9 <0.0072 <0.0015 <0.0005 0.0318 <0.0013 <0.0022 

SW44 0.2 0.5 <0.9234 0.04 1.21 0.01 0.34 5.1 0.03 0.03 <0.0709 <0.0837 0.94 <0.1220 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.008 2.7 <0.0072 <0.0015 0.0005 <0.0049 <0.0013 <0.0022 

MP48 0.2 0.5 10.2 0.16 2.09 0.07 0.29 27.8 0.82 0.14 <0.0709 0.41 5.83 0.19 <0.0980 <0.0037 <0.0065 <0.0069 <0.0126 0.057 6.6 <0.0072 <0.0015 0.0009 0.0347 <0.0013 <0.0022 



Appendix 3 main ions and ion balance 

 

 

ID Y X CLASS PROF Na (ppm) K (ppm) Ca (ppm) Mg (ppm) F (ppm) Cl (ppm) NO3 (ppm) PO4 (ppm) SO4 (ppm) tot-Alk mmol/l IB%  IB% (with organic anion) 

SW1 7494595 490720 SW 22 0.194 0.149 0.907 0.338 0.011 0.362 0.05 0.025 0.273 0.080 -6 
 

SW2 7493558 491703 SW 23 1.649 0.514 2.738 2.083 0.024 1.837 0.05 0.025 0.895 0.070 47 -9 

SW3 7493455 491842 SW 24 1.262 0.129 2.612 0.835 0.034 0.436 0.050 0.025 0.273 0.180 13 
 

SW4 7493201 491702 SW 25 0.100 0.129 0.786 0.509 0.010 0.896 0.050 0.025 0.272 0.020 26 -13 

SW5 7493442 492419 SW 26 1.164 0.125 1.567 0.917 0.021 1.224 0.050 0.025 0.302 0.060 34 -3 

SW6 7493637 492072 SW 27 0.953 0.164 1.102 0.440 0.024 0.623 0.050 0.025 0.281 0.060 24 -7 

SW7 7495421 489488 SW 28 0.325 0.194 1.364 0.423 0.013 0.509 0.050 0.025 0.273 0.010 60 
 

GA405 7492592 488867.1 GW 29 
            

GA305 7492588 488865.7 GW 30 1.575 0.515 5.850 4.000 0.025 0.769 0.050 0.025 1.664 0.640 0 
 

GA203 7492584 488864.7 GW 31 1.535 0.500 5.490 3.755 0.039 0.798 0.050 0.025 1.613 0.610 0 
 

SW8 7492492 489130 SW 32 0.782 0.285 2.181 0.799 0.017 0.573 0.050 0.025 0.274 0.200 -2 
 

GA103 7491750 489177 GW 33 0.700 0.125 3.475 1.255 0.018 0.594 0.050 0.025 0.296 0.810 -46 
 

SW9 7491750 489177 SW 34 0.851 0.225 2.112 0.980 0.015 0.548 1.105 0.025 0.283 0.220 -6 
 

GA403 7491716 489162 GW 35 3.390 0.960 25.910 8.150 0.047 0.746 0.050 0.025 0.575 2.600 -10 
 

GA303 7491673 489140 GW 36 2.710 1.120 22.220 11.080 0.087 0.768 0.399 0.025 33.941 0.670 21 
 

SW10 7491673 489140 SW 37 0.861 0.163 1.757 0.559 0.016 0.545 0.050 0.025 0.272 0.150 1 
 

SW11 7492113 489155 SW 38 0.936 0.257 1.571 0.724 0.014 0.804 0.050 0.025 0.273 0.140 5 
 

SW12 7492113 489079 SW 39 1.170 0.495 4.815 2.165 0.019 0.625 0.050 0.025 0.277 0.410 5 
 

SW13 7492223 489115 SW 40 0.871 0.213 1.591 0.684 0.017 0.583 0.050 0.025 0.277 0.180 -6 
 

SW14 7492354 489077 SW 41 1.535 0.980 11.395 9.990 0.034 0.855 0.050 0.025 0.342 1.340 4 -2 

SW15 7492429 488840 SW 42 0.798 0.129 1.623 0.709 0.016 0.517 0.050 0.025 0.273 0.170 -4 
 

SW16 7493379 489493 SW 43 1.107 0.680 1.907 0.902 0.018 0.685 0.050 0.025 0.273 0.130 20 2 

GA201 7493057 489665 GW 44 30.205 1.055 5.330 1.750 0.109 0.624 0.050 0.386 3.614 1.590 2 
 

SW17 7493061 489641 SW 45 0.827 0.053 0.970 0.707 0.007 0.837 0.050 0.025 0.461 0.000 62 -32 

GA400 7493039 489862 GW 46 2.120 1.010 17.250 4.860 0.034 0.824 0.050 0.025 2.583 0.690 28 
 

GA202 7492275 489611 GW 48 3.860 3.840 14.810 10.395 0.116 0.611 0.050 0.072 2.363 1.320 15 
 

SW19 7492275 489611 SW 49 1.188 0.444 2.109 1.695 0.018 0.868 0.050 0.025 0.288 0.140 28 -7 

SW20 7492122 489780 SW 50 0.441 0.040 1.246 0.319 0.010 0.400 0.050 0.025 0.287 0.090 0 
 

GA-itä 7491923 489851 GW 51 0.195 0.200 6.710 2.270 0.020 0.557 0.050 0.025 0.565 0.590 -7 
 

GA-keski 7491923 489851 GW 52 3.900 1.320 9.000 16.590 0.038 0.834 0.050 0.025 0.280 1.980 0 
 

GA-etelä 7491923 489851 GW 53 3.230 1.820 11.610 20.630 0.078 0.904 0.050 0.034 0.281 2.500 -1 
 

SW21 7491923 489851 SW 54 0.851 0.139 1.533 0.646 0.017 0.549 0.050 0.025 0.273 0.170 -6 
 

SW22 7495458 490259 SW 21 0.748 0.293 1.153 0.499 0.014 0.885 0.050 0.025 0.366 0.070 15 
 

SW23 7495605 490602 SW 20 0.428 0.115 0.040 0.276 0.007 0.790 0.050 0.025 0.284 0.050 -26 
 

MP2 7495605 490602 MP 20 0.085 0.145 6.390 1.095 0.015 0.221 0.050 0.025 0.289 0.370 4 
 

SW24 7495101 490990 LAKE 55 0.940 0.502 3.868 0.938 0.010 1.305 0.050 0.025 0.379 0.170 20 -8 

SW25 7495091 490966 SW 56 0.339 0.158 2.242 0.593 0.008 1.390 0.050 0.025 0.273 0.090 14 -8 

SW26 7494454 491808 SW 19 1.308 0.257 1.077 0.444 0.017 0.618 0.050 0.025 0.281 0.100 11 
 

MP4 7494454 491808 MP 19 3.990 0.055 8.660 2.835 0.066 0.489 0.050 0.025 0.286 0.650 11 
 



Appendix 3 main ions and ion balance 

 

 

ID Y X CLASS PROF Na (ppm) K (ppm) Ca (ppm) Mg (ppm) F (ppm) Cl (ppm) NO3 (ppm) PO4 (ppm) SO4 (ppm) tot-Alk mmol/l IB%  IB% (with organic anion) 

MP3 7494454 491808 MP 19 1.700 0.080 14.350 4.100 0.080 0.298 0.050 0.025 0.279 1.230 -5 
 

MP5 7494454 491808 MP 19 2.465 0.320 15.010 4.390 0.090 0.283 0.050 0.025 0.277 1.320 -4 
 

MP6 7492330 489066 MP 1 1.030 0.000 7.170 4.470 0.028 0.475 0.050 0.025 0.305 0.880 -8 
 

MP7 7492561 489418 MP 2 3.230 1.250 15.610 8.280 0.082 0.862 0.050 0.025 0.277 1.690 -3 
 

SW27 7492561 489418 SW 2 1.940 0.335 2.615 1.980 0.027 0.725 0.050 0.025 0.905 0.280 9 
 

SW28 7491976 489447 SW 3 0.550 0.110 2.355 1.105 0.017 0.582 0.050 0.025 0.274 0.270 -11 
 

MP8 7491976 489447 MP 3 0.980 0.210 5.855 3.010 0.022 0.447 0.050 0.025 0.273 0.670 -8 
 

MP9 7491976 489447 MP 3 0.670 0.115 7.385 3.230 0.024 0.455 0.050 0.025 0.284 0.620 2 
 

SW29 7491930 489704 SW 4 1.181 0.033 1.554 0.528 0.016 0.782 0.050 0.025 0.304 0.140 1 
 

MP10 7491930 489704 MP 4 0.015 0.020 10.070 2.970 0.025 1.060 0.050 0.025 0.301 0.840 -8 
 

MP11 7491930 489704 MP 4 0.075 0.000 8.150 1.930 0.021 1.059 0.050 0.025 0.291 0.540 -1 
 

SW30 7492183 489778 SW 5 0.224 0.095 0.392 0.193 0.011 0.742 0.050 0.025 0.306 0.060 -30 
 

MP12 7492183 489778 MP 5 0.260 0.375 2.545 0.950 0.012 0.366 0.050 0.025 0.282 0.290 -15 
 

SW31 7492164 489478 SW 6 0.250 0.545 2.350 1.015 0.014 0.309 1.537 0.025 0.406 0.270 -16 
 

MP13 7492164 489478 MP 6 0.110 0.000 8.705 2.980 0.039 0.731 0.050 0.025 0.287 0.780 -8 
 

SW32 7493350 489534 SW 7 0.364 0.220 1.334 0.532 0.013 0.571 0.050 0.025 0.448 0.110 -2 
 

MP14 7493350 489534 MP 7 0.300 0.007 1.462 0.596 0.012 0.494 0.050 0.025 0.271 0.120 -2 
 

GA300 7492533 489739 GW 57 8.350 0.705 5.705 1.335 0.036 0.693 0.050 0.025 2.908 0.610 6 
 

MP15 7492533 489739 MP 58 1.418 0.053 1.298 0.567 0.013 0.451 0.050 0.025 0.407 0.000 78 -6 

SW33 7492447 489715 SW 8 0.157 0.124 0.179 0.366 0.005 0.479 0.050 0.025 0.475 0.000 34 -55 

MP16 7492447 489715 MP 8 0.418 0.189 1.465 0.652 0.009 0.460 0.050 0.025 0.503 0.000 72 -18 

SW34 7492120 489732 SW 9 0.148 0.163 0.840 0.369 0.010 0.746 0.050 0.025 0.273 0.110 -25 -32 

MP17 7492120 489732 MP 9 0.435 0.125 9.490 3.695 0.014 0.519 2.009 0.025 0.273 0.770 -1 
 

MP18 7492120 489732 MP 9 0.240 0.000 9.350 3.495 0.013 0.501 1.642 0.025 0.273 0.710 1 
 

MP19 7492120 489732 MP 9 0.265 0.025 6.785 2.025 0.014 0.437 0.050 0.025 0.291 0.460 4 
 

MP20 7492120 489732 MP 9 0.310 0.275 5.420 1.650 0.014 0.565 0.050 0.025 0.272 0.390 2 
 

SW35 7492235 490021 SW 10 0.039 0.064 0.916 0.376 0.010 0.698 0.050 0.025 0.270 0.060 -4 
 

MP21 7492235 490021 MP 10 0.085 0.065 4.550 1.095 0.015 0.502 0.050 0.025 0.274 0.330 -4 
 

MP22 7492235 490021 MP 10 0.105 0.110 1.390 0.467 0.014 0.493 0.050 0.025 0.273 0.110 -6 
 

SW36 7492787 490136 SW 59 0.281 0.189 2.492 1.245 0.013 0.632 0.050 0.025 0.321 0.190 6 
 

SW37 7494697 491636 SW 11 0.595 1.025 3.875 1.320 0.024 0.976 0.050 0.025 0.324 0.410 -11 
 

MP24 7494697 491636 MP 11 2.520 0.000 58.180 13.140 0.143 0.187 0.050 0.025 0.373 3.250 11 
 

MP25 7494697 491636 MP 11 1.350 0.140 52.990 12.770 0.071 0.190 0.050 0.025 0.279 1.300 48 
 

MP27 7494697 491636 MP 11 0.155 0.245 11.140 2.695 0.027 0.556 0.050 0.025 0.277 0.750 1 
 

SW38 7494984 491857 SW 12 0.741 0.091 2.755 0.837 0.026 0.899 0.050 0.025 0.750 0.190 2 
 

MP28 7494984 491857 MP 12 1.990 0.890 29.230 7.100 0.060 0.986 0.050 0.025 0.275 1.790 8 
 

MP30 7494984 491857 MP 12 1.640 0.400 24.230 5.390 0.050 0.876 0.050 0.025 0.275 1.470 7 
 

MP31 7494984 491857 MP 12 0.960 0.125 7.720 1.900 0.036 0.377 0.050 0.025 0.276 0.520 4 
 

SW39 7493368 491765 SW 13 0.680 0.570 0.905 0.445 0.049 0.733 0.050 0.025 0.313 0.220 -33 
 



Appendix 3 main ions and ion balance 

 

 

ID Y X CLASS PROF Na (ppm) K (ppm) Ca (ppm) Mg (ppm) F (ppm) Cl (ppm) NO3 (ppm) PO4 (ppm) SO4 (ppm) tot-Alk mmol/l IB%  IB% (with organic anion) 

MP34 7493368 491765 MP 13 0.135 0.000 6.910 2.580 0.056 0.577 0.050 0.025 0.279 0.540 0 
 

SW40 7493193 492247 SW 14 0.770 0.170 1.251 0.504 0.030 0.706 0.050 0.025 0.274 0.100 6 
 

SW41 7493944 491160 SW 15 0.179 0.049 2.167 0.719 0.023 0.571 0.050 0.025 0.273 0.180 -7 
 

SW42 7492171 489027 SW 16 0.360 0.162 1.179 0.557 0.013 0.495 0.050 0.025 0.297 0.160 -18 
 

MP43 7492171 489027 MP 16 0.385 0.115 3.390 1.150 0.019 0.540 0.050 0.025 0.273 0.320 -9 
 

MP44 7492171 489027 MP 16 0.410 0.230 1.900 0.685 0.016 0.472 0.050 0.025 0.278 0.210 -14 
 

SW43 7491458 488456 SW 17 0.025 0.032 2.102 0.820 0.015 0.433 0.050 0.025 0.272 0.180 -7 
 

MP45 7491458 488456 MP 17 0.325 0.000 2.510 0.970 0.013 0.456 0.050 0.025 0.296 0.320 -22 
 

MP46 7491458 488456 MP 17 0.110 0.005 5.250 2.130 0.020 0.592 0.050 0.025 0.279 0.510 -9 
 

MP47 7491458 488456 MP 17 0.155 0.270 1.820 0.695 0.017 0.395 1.706 0.025 0.300 0.210 -22 
 

SW44 7491605 488515 SW 18 0.068 0.099 1.037 0.439 0.012 0.472 0.050 0.025 0.272 0.110 -16   

 



Appendix 4 Field measurements, stable isotopes, DSi and DOC 

 

ID Y X CLASS Date PROF Depth (m) EC mS/cm pH T °C DOC (ppm) δ18O δ D d-excess DSi 

SASW1 7494595 490720 SW 13.9.2016 22 0 0.073 5.83 8.44 6.8 -10.89 -80.92 6.2 0.66863 

SASW2 7493558 491703 SW 13.9.2016 23 0 0.049 4.47 8.92 65.6 -12.43 -89.83 9.61 5.39742 

SASW3 7493455 491842 SW 13.9.2016 24 0 0.019 6.19 8.88 6.3 -10.98 -81 6.84 4.2423 

SASW4 7493201 491702 SW 13.9.2016 25 0 0.012 5.1 11.32 12.8 -10.73 -77.96 7.88 2.34083 

SASW5 7493442 492419 SW 13.9.2016 26 0 0.018 5.16 9.74 23.6 -12.08 -86.96 9.68 3.97774 

SASW6 7493637 492072 SW 13.9.2016 27 0 0.015 5.22 9.69 14.5 -11.72 -84.52 9.24 2.59828 

SASW7 7495421 489488 SW 13.9.2016 28 0 0.013 6.3 8.75 5.7 -10.31 -78.95 3.53 0.785 

SAGA405 7492591.82 488867.08 GW 13.9.2016 29 
 

0.226 6.8 5.48 3.8 -12.45 -95.42 4.18 7.59375 

SAGA305 7492588.24 488865.70 GW 13.9.2016 30 
 

0.069 6.52 5.64 1.3 -13.04 -97.52 6.8 4.76364 

SAGA203 7492584.02 488864.69 GW 13.9.2016 31 
 

0.065 6.54 6.12 1.9 -13.16 -98.66 6.62 4.70693 

SASW8 7492492 489130 SW 14.9.2016 32 0 0.022 6 6.84 5.3 -10.09 -78.51 2.21 1.38738 

SAGA103 7491750 489177 GW 14.9.2016 33 
 

0.06 5.97 8.75 6.6 -12.5 -95.79 4.21 2.45545 

SASW9 7491750 489177 SW 14.9.2016 34 0 0.023 6.85 7.51 4.8 -9.84 -77.04 1.68 1.14149 

SAGA403 7491716 489162 GW 14.9.2016 35 
 

0.265 7.08 5.86 5.6 -12.08 -94.04 2.6 10.57159 

SAGA303 7491673 489140 GW 14.9.2016 36 
 

0.193 6.67 6.9 5.6 -12.32 -94.03 4.53 6.14446 

SASW10 7491673 489140 SW 14.9.2016 37 0 0.02 6.74 8.69 4.8 -9.955 -77.445 2.195 1.23 

SASW11 7492113 489155 SW 14.9.2016 38 0 0.018 6.13 8.25 4.4 -9.97 -76.74 3.02 1.1061 

SASW12 7492113 489079 SW 14.9.2016 39 0 0.048 6.4 8.47 6.9 -11.9 -92.1 3.1 3.46149 

SASW13 7492223 489115 SW 14.9.2016 40 0 0.018 6.38 8.18 5.4 -9.88 -77.6 1.44 1.20754 

SASW14 7492354 489077 SW 14.9.2016 41 0 0.13 6.64 8.59 34.2 -12.45 -94.08 5.52 4.84111 

SASW15 7492429 488840 SW 14.9.2016 42 0 0.019 6.87 8.4 4.8 -9.9 -78.38 0.82 1.35238 

SASW16 7493379 489493 SW 14.9.2016 43 0 0.022 6.13 9.66 14.2 -11.77 -88.88 5.28 3.6333 

SAGA201 7493057 489665 GW 14.9.2016 44 
 

0.097 7 9.29 1.6 -13.68 -99.14 10.3 6.85884 

SASW17 7493061 489641 SW 14.9.2016 45 0 0.04 4.35 10.86 49.2 -11.8 -86.46 7.94 2.39347 

SAGA400 7493039 489862 GW 14.9.2016 46 
 

0.32 6.47 8.56 1.3 -13.96 -102.08 9.6 4.72568 

SASW18 7492534 489735 SW 14.9.2016 47 0 0.054 3.94 8.36 51.5 -12.29 -89.4 8.92 2.84704 

SAGA202 7492275 489611 GW 14.9.2016 48 
 

0.135 7.15 5.76 1.6 -14.31 -106.57 7.91 8.12881 

SASW19 7492275 489611 SW 14.9.2016 49 0 0.032 5.9 9.43 36.1 -12.47 -91.39 8.37 4.31663 

SASW20 7492122 489780 SW 14.9.2016 50 0 0.01 5.64 10.12 3.8 -9.78 -77.03 1.21 
 

SAGA-itä 7491923 489851 GW 14.9.2016 51 
 

0.118 5.88 9.16 12 -11.29 -86.26 4.06 1.88337 

SAGA-keski 7491923 489851 GW 14.9.2016 52 
 

0.278 7.42 6.3 4.6 -12.72 -97.87 3.89 11.6974 



Appendix 4 Field measurements, stable isotopes, DSi and DOC 

 

ID Y X CLASS Date PROF Depth (m) EC mS/cm pH T °C DOC (ppm) δ18O δ D d-excess DSi 

SAGA-etelä 7491923 489851 GW 14.9.2016 53 
 

0.28 7.66 5.94 6.3 -12.75 -98.05 3.95 11.44007 

SASW21 7491923 489851 SW 14.9.2016 54 0 0.018 7.95 11.25 5.3 -10.47 -79.65 4.11 
 

YSI meas 7495473 490296 SW 15.9.2016 
 

0 0.04 4.65 8.99 
     

SASW22 7495458 490259 SW 15.9.2016 21 0 0.013 5.63 9.74 18.3 -11.44 -82.86 8.66 1.28 

MP1 7495458 490259 MP 15.9.2016 21 -0.5 
   

22.1 -12.03 -91.5 4.74 5.1949 

SASW23 7495605 490602 SW 15.9.2016 20 0 0.01 5.46 9.81 8.2 -8.63 -68.6 0.44 0.01277 

MP2 7495605 490602 MP 15.9.2016 20 -1 0.052 5.67 
 

17.4 -9.42 -79.55 -4.19 1.17343 

SASW24 7495101 490990 LAKE 15.9.2016 55 
 

0.028 5.83 10.21 32.3 -11 -79.51 8.49 1.0824 

SASW25 7495091 490966 SW 15.9.2016 56 
 

0.022 5.6 10.3 15 -10.47 -75.51 8.25 0.36836 

SASW26 7494454 491808 SW 15.9.2016 19 0 0.015 5.88 11.39 13.8 -10.13 -72.41 8.63 1.64183 

MP4 7494454 491808 MP 15.9.2016 19 -1 0.095 6.02 
 

20.9 -12.47 -92.45 7.31 7.67948 

MP3 7494454 491808 MP 15.9.2016 19 -2.17 0.151 6.21 
 

14.3 -14.35 -105.74 9.06 8.66807 

MP5 7494454 491808 MP 15.9.2016 19 -2.87 0.162 6.34 
 

9 -14.79 -108.77 9.55 8.99 

MP6 7492330 489066 MP 17.10.2016 1 -1.3 0.176 6.55 4.72 10.9 -11.33 -87.61 3.03 5.6046 

MP7 7492561 489418 MP 18.10.2016 2 -0.5 0.169 6.26 4.5 2.5 -14.15 -104.68 8.52 6.51469 

SASW27 7492561 489418 SW 18.10.2016 2 0 0.035 5.8 1.89 5.8 -13.36 -98.5 8.38 6.1293 

SASW28 7491976 489447 SW 18.10.2016 3 0 0.0018 6.37 2.05 3.7 -10.27 -80.07 2.09 1.91127 

MP8 7491976 489447 MP 18.10.2016 3 -2.5 0.066 6.25 4.83 9 -12.2 -94.05 3.55 3.10898 

MP9 7491976 489447 MP 18.10.2016 3 -1.5 0.097 6.26 5.22 8.3 -12.09 -93.1 3.62 3.36051 

SASW29 7491930 489704 SW 18.10.2016 4 0 0.02 5.53 2.09 3.1 -10.35 -79.83 2.97 1.91299 

MP10 7491930 489704 MP 18.10.2016 4 -2 0.185 6.07 5.47 20.3 -10.82 -82.57 3.99 4.46714 

MP11 7491930 489704 MP 18.10.2016 4 -1 0.143 5.96 5.8 19.6 -10.93 -83.73 3.71 3.42391 

SASW30 7492183 489778 SW 18.10.2016 5 0 0.009 5.34 1.7 3.5 -10.41 -79.05 4.23 1.00064 

MP12 7492183 489778 MP 18.10.2016 5 -0.5 0.117 
 

3.58 12.6 -11.58 -88.96 3.68 
 

SASW31 7492164 489478 SW 18.10.2016 6 0 0.021 6.23 1.78 4.6 -10.78 -82.02 4.22 1.56712 

MP13 7492164 489478 MP 18.10.2016 6 -0.5 0.194 6.18 4.63 14.4 -10.79 -84.41 1.91 1.2899 

SASW32 7493350 489534 SW 19.10.2016 7 0 0.014 4.62 3.84 5 -9.67 -76.16 1.2 1.10562 

MP14 7493350 489534 MP 19.10.2016 7 -0.5 0.037 5.5 4.35 6.7 -9.97 -78.52 1.24 3.63554 

SAGA300 7492533 489739 GW 19.10.2016 57 
 

0.075 5.96 7.09 8.6 -13.73 -100.61 9.23 6.79343 

MP15 7492533 489739 MP 19.10.2016 58 -0.3 
   

48 -12.54 -91.82 8.5 6.55785 

SASW33 7492447 489715 SW 19.10.2016 8 0 0.028 3.73 4.37 29.1 -11.44 -85.55 5.97 1.80464 



Appendix 4 Field measurements, stable isotopes, DSi and DOC 

 

ID Y X CLASS Date PROF Depth (m) EC mS/cm pH T °C DOC (ppm) δ18O δ D d-excess DSi 

MP16 7492447 489715 MP 19.10.2016 8 -0.25 0.034 3.74 5.13 38.6 -11.4 -85.53 5.67 3.2933 

SASW34 7492120 489732 SW 19.10.2016 9 0 0.014 4.74 4.23 4.8 -10.98 -83.12 4.72 1.16082 

MP17 7492120 489732 MP 19.10.2016 9 -2.8 0.138 5.87 5.8 9 -11.26 -86.41 3.67 1.32886 

MP18 7492120 489732 MP 19.10.2016 9 -1.8 0.134 6.07 6.17 8.7 -11.1 -85.53 3.27 1.35306 

MP19 7492120 489732 MP 19.10.2016 9 -1.1 0.109 6.05 6.03 11.1 -11.18 -86.45 2.99 1.29668 

MP20 7492120 489732 MP 19.10.2016 9 -0.3 0.088 6.05 5.37 8.7 -11.3 -86.87 3.53 1.30854 

SASW35 7492235 490021 SW 19.10.2016 10 0 0.012 4.79 3.66 4.4 -9.99 -76.87 3.05 0.67263 

MP21 7492235 490021 MP 19.10.2016 10 -1.5 0.091 5.77 6.6 10.5 -11.55 -88.46 3.94 1.11792 

MP22 7492235 490021 MP 19.10.2016 10 -0.5 0.068 5.57 5.24 11.8 -10.7 -81.95 3.65 0.85372 

SASW36 7492787 490136 SW 19.10.2016 59 0 0.046 5.79 3.56 6.2 -9.77 -76.24 1.92 2.01519 

SASW37 7494697 491636 SW 20.10.2016 11 0 0.05 7.9 2.33 20.9 -11.27 -80.89 9.27 4.07363 

MP23 7494697 491636 MP 20.10.2016 11 -2 
        

MP24 7494697 491636 MP 20.10.2016 11 -1.5 0.433 7.77 5.19 4.7 -13.59 -101.9 6.82 8.93133 

MP25 7494697 491636 MP 20.10.2016 11 -1 0.474 7.85 5.16 8.8 -13 -96.94 7.06 6.17714 

MP26 7494697 491636 MP 20.10.2016 11 -0.7 0.446 7.64 4.8 
     

MP27 7494697 491636 MP 20.10.2016 11 -0.3 0.315 7.62 3.78 42.4 -11.79 -87.01 7.31 4.9176 

YSI meas 7494697 491636 
 

20.10.2016 11 -0.15 0.293 7.61 3.49 
     

SASW38 7494984 491857 SW 20.10.2016 12 0 0.025 7.79 2.8 5 -11.57 -86.52 6.04 2.8036 

MP28 7494984 491857 MP 20.10.2016 12 -3.5 0.239 7.96 4.23 5.9 -13.37 -101.44 5.52 9.73461 

MP29 7494984 491857 MP 20.10.2016 12 -2.5 0.229 
       

MP30 7494984 491857 MP 20.10.2016 12 -1.5 0.188 8.01 4.6 7.4 -13.09 -99.69 5.03 7.22 

MP31 7494984 491857 MP 20.10.2016 12 -0.5 0.075 7.59 4.25 13.2 -12.71 -96.54 5.14 3.60519 

MP32 7494984 491857 MP 20.10.2016 12 -0.2 0.48 
 

3.98 
     

SASW39 7493368 491765 SW 20.10.2016 13 0 0.014 7.05 3.26 6.7 -11.02 -80.97 7.19 4.751 

MP33 7493368 491765 MP 20.10.2016 13 -1 0.133 
       

MP34 7493368 491765 MP 20.10.2016 13 -0.5 0.111 7.61 5.04 20.5 -11.7 -87.44 6.16 6.77952 

MP35 7493368 491765 MP 20.10.2016 13 -0.2 0.086 7.56 4.58 
     

SASW40 7493193 492247 SW 20.10.2016 14 0 0.015 7.68 3.47 5.7 -11.48 -84.39 7.45 5.11952 

MP36 7493193 492247 MP 20.10.2016 14 -2.4 
   

16.4 
    

MP37 7493193 492247 MP 20.10.2016 14 -1.4 
   

17.3 
    

MP38 7493193 492247 MP 20.10.2016 14 -0.9 
   

11.7 
    



Appendix 4 Field measurements, stable isotopes, DSi and DOC 

 

ID Y X CLASS Date PROF Depth (m) EC mS/cm pH T °C DOC (ppm) δ18O δ D d-excess DSi 

MP39 7493193 492247 MP 20.10.2016 14 -0.6 
   

9 
    

SASW41 7493944 491160 SW 20.10.2016 15 0 0.019 7.45 2.95 5.2 -11.19 -83.1 6.42 2.3192 

MP40 7493944 491160 MP 20.10.2016 15 -0.6 
   

19.8 -10.5 -81.61 2.39 2.69827 

SASW42 7492171 489027 SW 21.10.2016 16 0 0.034 7.11 2.58 7.3 -10.2 -78.56 3.04 1.51635 

MP41 7492171 489027 MP 21.10.2016 16 -1.5 
      

0 
 

MP42 7492171 489027 MP 21.10.2016 16 -1 0.133 
   

-11.22 -87.73 2.03 1.86907 

MP43 7492171 489027 MP 21.10.2016 16 -0.5 0.125 6.57 5.58 18.1 -11.05 -86.53 1.87 2.35946 

YSI meas 7492171 489027 
  

16 -0.3 0.123 7.3 4.62 
     

MP44 7492171 489027 MP 21.10.2016 16 -0.15 0.048 6.47 3.61 7 -10.11 -79.29 1.59 1.56915 

SASW43 7491458 488456 SW 21.10.2016 17 0 0.013 6.43 1.63 5.3 -11.04 -83.77 4.55 3.54246 

MP45 7491458 488456 MP 21.10.2016 17 -1 0.063 6.27 5.53 10.1 -12.51 -96 4.08 3.23044 

MP46 7491458 488456 MP 21.10.2016 17 -0.3 0.113 6.46 4.36 18.7 -12.03 -92.02 4.22 5.7221 

MP47 7491458 488456 MP 21.10.2016 17 -0.15 0.037 6.3 3.34 8.6 -11.19 -85.8 3.72 4.35562 

SASW44 7491605 488515 SW 21.10.2016 18 0 0.009 5.99 1.86 6.6 -10.8 -81.26 5.14 2.54695 

MP48 7491605 488515 MP 21.10.2016 18 -0.3 0.037 
  

6.8 -10.64 -82.78 2.34 2.89343 

SASW45 7496382.66 489419.7 LAKE 27.3.2017 68 0 
    

-13.77 -101.56 8.6 6.569473 

SAGA405B 7492591.82 488867.08 GW 27.3.2017 29 
     

-12.49 -95.6 4.32 8.286044 

SAGA305B 7492588.24 488865.7 GW 27.3.2017 30 
     

-12.46 -95.11 4.57 7.491798 

SAGA203B 7492584.02 488864.69 GW 27.3.2017 31 
     

-12.54 -95.34 4.98 4.764454 

SASW46 7492679.49 488780.94 SPRING 27.3.2017 69 0 
    

-12.11 -92.08 4.8 4.927495 

MP49 7494993.7 491893.49 MP 29.3.2017 70 -3 
    

-12.27 -92.93 5.23 3.531596 

SASW47 7492413 488645.94 SPRING 29.3.2017 71 0 
    

-11.22 -86.73 3.03 4.025969 

SASW48 7491797.05 488658.68 SW 29.3.2017 60 0 
    

-13.32 -98.7 7.86 12.59098 

MP50 7491797.05 488658.68 MP 29.3.2017 60 -1 
    

-11.74 -90.32 3.6 4.791536 

SASW49 7491809.09 488972.92 SW 29.3.2017 61 0 
    

-12.58 -95.05 5.59 11.34002 

MP51 7491809.09 488972.92 MP 29.3.2017 61 -2 
    

-11.93 -92.12 3.32 6.391444 

SASW50 7492137.02 490493.78 SW 31.3.2017 62 0 
    

-11.82 -92.24 2.32 
 

MP52 7492137.02 490493.78 MP 31.3.2017 62 -4.65 
    

-11.23 -87.95 1.89 3.069787 

MP53 7492137.02 490493.78 MP 31.3.2017 62 -3.55 
    

-11.42 -89.16 2.2 4.011009 

MP54 7492137.02 490493.78 MP 31.3.2017 62 2.45 
    

-11.3 -88.02 2.38 4.636007 

MP55 7492137.02 490493.78 MP 31.3.2017 62 -1.5 
    

-11.55 -88.22 4.18 4.105422 



Appendix 4 Field measurements, stable isotopes, DSi and DOC 

 

ID Y X CLASS Date PROF Depth (m) EC mS/cm pH T °C DOC (ppm) δ18O δ D d-excess DSi 

SASW51 7492834.98 490651.92 SW 31.3.2017 63 0 
    

-11.9 -91.03 4.17 5.25303 

MP56 7492834.98 490651.92 MP 31.3.2017 63 -2.5 
    

-11.49 -87.81 4.11 3.704584 

SASW52 7491710.17 489171.17 SW 1.4.2017 64 0 
    

-11.46 -88.61 3.07 5.656201 

MP57 7491710.17 489171.17 MP 1.4.2017 64 -2 
    

-12.04 -92.58 3.74 3.261435 

MP58 7491710.17 489171.17 MP 1.4.2017 64 -1 
    

-11.8 -91.58 2.82 2.664786 

SASW53 7491335.96 489076.69 SW 1.4.2017 65 0 
    

-11.64 -89.23 3.89 
 

MP59 7491335.96 489076.69 MP 1.4.2017 65 -4.82 
    

-13.32 -99.55 7.01 9.738708 

MP60 7491335.96 489076.69 MP 1.4.2017 65 -4 
       

9.372833 

MP61 7491335.96 489076.69 MP 1.4.2017 65 -3.63 
    

-11.77 -90.58 3.58 4.358373 

MP62 7491335.96 489076.69 MP 1.4.2017 65 -2.03 
    

-11.84 -90.88 3.84 4.732726 

MP63 7491335.96 489076.69 MP 1.4.2017 65 -1 
    

-10.99 -84.43 3.49 2.765694 

SASW54 7491874.33 488836.35 SW 1.4.2017 66 0 
    

-12.4 -92.62 6.58 10.77444 

MP64 7491874.33 488836.35 MP 1.4.2017 66 -1.5 
    

-12.34 -94.59 4.13 7.064249 

MP65 7491874.33 488836.35 MP 1.4.2017 66 -0.76 
    

-12.53 -95.48 4.76 6.287451 

SASW55 7495248.76 489723.39 SW 2.4.2017 67 0 
    

-11.57 -88.25 4.31 6.679336 

MP66 7495248.76 489723.39 MP 2.4.2017 67 
     

-12.14 -93.19 3.93 3.787875 

17HYDO22/P8 7495590 489477 GW Summer 
      

-13.87 -102.56 8.4 
 

17GA405 7492591.82 488867.08 GW Summer 
      

-12.7 -96.14 5.46 
 

17GA203 7492584.02 488864.69 GW Summer 
      

-12.58 -95.23 5.41 
 

17HYDO16/P9 7495007 489405 GW Summer 
      

-13.8 -102.62 7.78 
 

17HYDO21/P7 7496003 489474 GW Summer 
      

-13.96 -104.22 7.46 
 

17HYDO20/P6 7496286 489839 GW Summer 
      

-14.24 -105.68 8.24 
 

17HYDO15/P4 7494899.5 489766.1 GW Summer 
      

-13.09 -97.78 6.94 
 

17HYDO19/P5 7496662 490037 GW Summer 
      

-12.1 -90.52 6.28 
 

17SPRING1 7492880 488923 SPRING Summer 
      

-10.87 -86.23 0.73 
 

17SPRING2 7492878 488914 SPRING Summer 
      

-11.07 -87.38 1.18 
 

17SPRING3 7493006 488977 SPRING Summer 
      

-11.42 -88.72 2.64 
 

17SPRING4 7492685 488781 SPRING Summer 
      

-12.87 -96.76 6.2 
 

17SPRING5 7492629 488763 SPRING Summer 
      

-12.58 -94.56 6.08 
 

17SPRING6 7492381 488253 SPRING Summer 
      

-13.51 -100.63 7.45 
 

17SPRING7 7492450 488508 SPRING Summer 
      

-12.98 -96.85 6.99 
 



Appendix 4 Field measurements, stable isotopes, DSi and DOC 

 

ID Y X CLASS Date PROF Depth (m) EC mS/cm pH T °C DOC (ppm) δ18O δ D d-excess DSi 

17SPRING8 7492408 488746 SPRING Summer 
      

-10.62 -83.49 1.47 
 

17RIVER1 7492915 488937 SW Summer 
      

-12.61 -95.42 5.46 
 

17SUO1 7491529 488469 SW Summer 
      

-10.09 -79 1.72 
 

17Kärväslampi 7493007 489039 SW Summer 
      

-10.45 -83.58 0.02 
 

 



Appendix 5 Mean and median values for all the water samples 

 

Surface water samples EC mS/cm pH T °C DOC, ppm Dsi F (ppm) Cl (ppm) 
tot-Alk 
mmol/l Na (ppm) Mg (ppm) Al (ppb) K (ppm) Ca (ppm) V (ppb) Cr (ppb) 

N Valid 43 43 43 43 47 42 42 42 51 51 51 51 51 51 51 

Missing 8 8 8 8 4 9 9 9 0 0 0 0 0 0 0 

Mean 0.03 5.98 6.55 12.89 3.20 0.02 0.70 0.17 0.75 1.54 55.57 0.17 3.09 0.16 1.16 

Median 0.02 5.99 8.25 6.20 2.34 0.02 0.63 0.14 0.81 0.66 6.18 0.08 1.66 0.02 0.33 

Std. Deviation 0.02 1.03 3.41 14.43 2.78 0.01 0.28 0.21 0.48 2.50 162.39 0.20 3.88 0.49 2.90 

Minimum 0.00 3.73 1.63 3.10 0.01 0.01 0.31 0.00 0.06 0.20 0.45 0.02 0.25 0.00 0.13 

Maximum 0.13 7.95 11.39 65.60 12.59 0.05 1.84 1.34 2.01 13.11 963.27 0.98 21.48 3.06 20.35 

                 
Surface water samples Mn (ppb) Fe (ppm) Co (ppb) Ni (ppb) Cu (ppb) Zn (ppb) As (ppb) Pd (ppb) Cd (ppb) Sb (ppb) Ba (ppb) Pt (ppb) Pb (ppb) Th (ppb) U (ppb) 

N Valid 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 

Missing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mean 72.12 4.37 0.91 0.75 0.23 5.02 0.36 0.01 0.07 0.02 5.71 0.00 0.14 0.01 0.00 

Median 15.76 0.24 0.12 0.04 0.04 2.28 0.06 0.01 0.01 0.01 2.74 0.00 0.02 0.00 0.00 

Std. Deviation 122.88 11.35 1.77 1.75 0.43 10.17 0.75 0.01 0.36 0.02 7.14 0.00 0.32 0.03 0.01 

Minimum 0.35 0.02 0.01 0.04 0.04 0.40 0.06 0.00 0.01 0.00 0.29 0.00 0.00 0.00 0.00 

Maximum 540.74 56.92 7.88 11.21 2.59 71.24 4.51 0.07 2.59 0.10 27.27 0.01 1.77 0.23 0.04 

                 

                 

Mini-piezometer samples EC mS/cm pH T °C DOC, ppm Dsi F (ppm) Cl (ppm) 
tot-Alk 
mmol/l Na (ppm) Mg (ppm) Al (ppb) K (ppm) Ca (ppm) V (ppb) Cr (ppb) 

N Valid 39 33 31 40 54 33 33 33 66 66 66 66 66 66 66 

Missing 27 33 35 26 12 33 33 33 0 0 0 0 0 0 0 

Mean 0.16 6.49 4.89 14.52 4.45 0.03 0.53 0.73 1.02 2.96 36.59 0.25 10.48 0.36 1.06 

Median 0.13 6.26 4.83 11.40 3.90 0.02 0.49 0.54 0.87 2.27 15.08 0.13 7.52 0.03 0.53 

Std. Deviation 0.12 0.92 0.80 9.70 2.46 0.03 0.22 0.65 0.84 2.50 83.57 0.31 10.56 1.27 1.79 

Minimum 0.03 3.74 3.34 2.50 0.85 0.01 0.19 0.00 0.06 0.47 2.95 0.03 1.04 0.01 0.14 

Maximum 0.48 8.01 6.60 48.00 9.74 0.14 1.06 3.25 3.47 11.62 565.54 1.32 53.59 8.24 11.39 

                 
Mini-piezometer samples Mn (ppb) Fe (ppm) Co (ppb) Ni (ppb) Cu (ppb) Zn (ppb) As (ppb) Pd (ppb) Cd (ppb) Sb (ppb) Ba (ppb) Pt (ppb) Pb (ppb) Th (ppb) U (ppb) 

N Valid 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 

Missing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mean 179.58 14.83 1.99 0.98 0.38 39.52 2.44 0.03 0.11 0.05 14.18 0.00 0.09 0.01 0.00 

Median 147.01 9.39 1.43 0.69 0.18 11.71 1.08 0.02 0.01 0.03 11.43 0.00 0.04 0.00 0.00 

Std. Deviation 121.08 16.13 3.39 0.97 0.59 135.97 3.32 0.03 0.46 0.06 11.46 0.00 0.17 0.02 0.01 

Minimum 3.39 0.04 0.07 0.04 0.04 0.57 0.18 0.00 0.01 0.00 1.77 0.00 0.00 0.00 0.00 

Maximum 583.99 84.03 25.49 4.92 3.54 1094.43 14.71 0.13 3.32 0.33 81.53 0.01 1.05 0.12 0.04 

                 

                 



Appendix 5 Mean and median values for all the water samples 

 

Groundwater samples EC mS/cm pH T °C DOC, ppm Dsi F (ppm) Cl (ppm) 
tot-Alk 
mmol/l Na (ppm) Mg (ppm) Al (ppb) K (ppm) Ca (ppm) V (ppb) Cr (ppb) 

N Valid 13 13 13 13 16 12 12 12 16 16 16 16 16 16 16 

Missing 3 3 3 3 0 4 4 4 0 0 0 0 0 0 0 

Mean 0.17 6.70 6.99 4.68 6.77 0.05 0.73 1.22 4.26 7.00 15.90 0.83 12.78 0.85 1.67 

Median 0.14 6.67 6.30 4.60 6.83 0.04 0.76 0.75 2.02 4.91 6.45 0.77 9.21 0.30 0.52 

Std. Deviation 0.10 0.56 1.44 3.26 2.89 0.03 0.11 0.77 6.43 5.77 24.56 0.50 8.31 1.26 2.95 

Minimum 0.06 5.88 5.48 1.30 1.88 0.02 0.56 0.59 0.25 1.19 2.90 0.05 3.34 0.03 0.22 

Maximum 0.32 7.66 9.29 12.00 11.70 0.12 0.90 2.60 26.65 20.83 96.79 1.97 26.06 4.70 11.20 

                 
Groundwater samples Mn (ppb) Fe (ppm) Co (ppb) Ni (ppb) Cu (ppb) Zn (ppb) As (ppb) Pd (ppb) Cd (ppb) Sb (ppb) Ba (ppb) Pt (ppb) Pb (ppb) Th (ppb) U (ppb) 

N Valid 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 

Missing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mean 169.38 6.12 0.78 1.33 1.33 57.72 1.21 0.04 0.22 0.10 26.68 0.00 0.08 0.01 0.07 

Median 150.33 0.68 0.49 0.80 0.11 1.43 0.56 0.04 0.01 0.03 17.53 0.00 0.01 0.00 0.05 

Std. Deviation 162.84 8.47 0.99 1.35 3.78 214.42 1.45 0.02 0.84 0.18 24.21 0.00 0.13 0.02 0.08 

Minimum 1.45 0.00 0.01 0.04 0.04 0.11 0.05 0.02 0.01 0.01 3.57 0.00 0.00 0.00 0.00 

Maximum 505.94 27.76 3.20 3.97 15.29 861.25 4.62 0.08 3.38 0.72 88.01 0.01 0.41 0.07 0.24 

 



Appendix 6 Mann-Whitney U –test and Kruskal-Wallis test for surface water samples 

 

Mann-Whitney U –test for surface water samples. Differences of main ion and trace element 

content between the areas with and without H. vernicosus habitats.  

 

 

 

 

 

 

 

 



Appendix 6 Mann-Whitney U –test and Kruskal-Wallis test for surface water samples 

 

Mann-Whitney U –test for surface water samples. Differences of main ion and trace element 

content between the areas with shallow and deep peat depth.    

  

 

 

 



Appendix 6 Mann-Whitney U –test and Kruskal-Wallis test for surface water samples 

 

Kruskal-Wallis -test for surface water samples. Differences of main ion and trace element 

content between the areas with varying bedrock. 

 

 



Appendix 7 Mann-Whitney U –test and Kruskal-Wallis test for peat pore water samples 

 

 

Mann-Whitney U –test for peat pore water samples. Differences of main ion and trace 

element content between the areas with and without H. vernicosus habitats.  

 

 

 

 



Appendix 7 Mann-Whitney U –test and Kruskal-Wallis test for peat pore water samples 

 

 

Mann-Whitney U –test for peat pore water samples. Differences of main ion and trace 

element content between the areas with shallow and deep peat depth. 

 

 

 

Kruskal-Wallis -test for peat pore water samples. Differences of main ion and trace element 

content between the areas with varying bedrock. 



Appendix 7 Mann-Whitney U –test and Kruskal-Wallis test for peat pore water samples 

 

 

 

  

 

 

1 = graphic paraschist, 2 = mafic volcanic rock, 3 = quartzite, 4 = gabbro 



Appendix 7 Mann-Whitney U –test and Kruskal-Wallis test for peat pore water samples 

 

 

 

 

 



 

 

Varimax-rotated PCA factor loadings of standardized (log-transformed) geochemical 

variables.  

Loadings above 0.63 are bolded.  

 

Rotated Component Matrixa,b 

 

Component 

1 2 3 4 5 

logEC 0.204 0.539 0.220 0.168 0.203 

Log DOC 0.784 0.058 0.297 0.217 0.303 

O -0.278 -0.247 -0.875 -0.049 -0.082 

H -0.164 -0.401 -0.829 -0.074 -0.085 

DSi 0.209 0.269 0.822 -0.110 0.111 

logCl 0.652 -0.207 0.296 0.109 0.165 

SO4 (ppm) -0.049 0.067 0.654 0.410 0.119 

log_totAlk -0.086 0.817 0.140 -0.255 0.099 

Log Na 0.185 0.185 0.349 -0.106 0.787 

Log Mg 0.329 0.817 0.301 0.130 0.191 

Log Al 0.670 0.143 0.330 0.371 0.358 

Log K 0.271 0.395 -0.070 0.192 0.766 

Log Ca 0.206 0.897 0.202 -0.038 0.112 

Log V 0.715 0.223 0.285 0.369 0.387 

Log Cr 0.605 0.202 0.439 0.428 0.262 

Log Mn 0.852 0.136 -0.254 0.042 0.001 

Log Fe 0.869 0.323 0.109 0.008 0.081 

Log Co 0.873 0.265 0.118 0.223 -0.010 

Log Ni 0.709 0.203 0.332 0.304 0.288 

Log Cu 0.486 0.158 0.196 0.477 0.427 

Log Zn 0.596 0.099 -0.136 0.584 0.062 

Log As 0.825 0.336 0.125 0.028 -0.011 

Log Cd 0.391 0.149 0.283 0.658 0.173 

Log Sb 0.742 -0.032 0.251 0.406 0.210 

Log Ba 0.262 0.841 0.161 0.181 0.087 

Log Pb 0.673 0.120 0.207 0.374 0.279 

pH -0.286 0.410 0.052 -0.667 0.229 

Extraction Method: Principal Component Analysis.  
 Rotation Method: Varimax with Kaiser Normalization.a 
a. Rotation converged in 8 iterations. 

b. Only SW samples 
         

     

 


